Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2009, Volume 34, Pages 109–120 (Mi cmfd138)  

On the Poincaré isomorphism in $K$-theory on manifolds with edges

V. E. Nazaikinskiia, A. Yu. Savinb, B. Yu. Sterninb

a A. Ishlinsky Institite for Problems in Mechanics, Russian Academy of Sciences
b Independent University of Moscow
References:
Abstract: In this paper, the Poincaré isomorphism in $K$-theory on manifolds with edges is constructed. It is shown that the Poincaré isomorphism can be naturally constructed in terms of noncommutative geometry. More precisely, we obtain a correspondence between a manifold with edges and a noncommutative algebra and establish an isomorphism between the $K$-group of this algebra and the $K$-homology group of the manifold with edges, which is considered as a compact topological space.
English version:
Journal of Mathematical Sciences, 2010, Volume 170, Issue 2, Pages 238–250
DOI: https://doi.org/10.1007/s10958-010-0082-z
Bibliographic databases:
UDC: 515.168.5+517.986.32
Language: Russian
Citation: V. E. Nazaikinskii, A. Yu. Savin, B. Yu. Sternin, “On the Poincaré isomorphism in $K$-theory on manifolds with edges”, Proceedings of the Crimean autumn mathematical school-symposium, CMFD, 34, PFUR, M., 2009, 109–120; Journal of Mathematical Sciences, 170:2 (2010), 238–250
Citation in format AMSBIB
\Bibitem{NazSavSte09}
\by V.~E.~Nazaikinskii, A.~Yu.~Savin, B.~Yu.~Sternin
\paper On the Poincar\'e isomorphism in $K$-theory on manifolds with edges
\inbook Proceedings of the Crimean autumn mathematical school-symposium
\serial CMFD
\yr 2009
\vol 34
\pages 109--120
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd138}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2588089}
\transl
\jour Journal of Mathematical Sciences
\yr 2010
\vol 170
\issue 2
\pages 238--250
\crossref{https://doi.org/10.1007/s10958-010-0082-z}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77957743067}
Linking options:
  • https://www.mathnet.ru/eng/cmfd138
  • https://www.mathnet.ru/eng/cmfd/v34/p109
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:388
    Full-text PDF :88
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024