Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2008, Volume 29, Pages 62–70 (Mi cmfd124)  

Problem on small motions of ideal rotating relaxing fluid

D. A. Zakora

Vernadskiy Tavricheskiy National University
References:
Abstract: We study an evolution problem on small motions of the ideal rotating relaxing fluid in bounded domains. We begin from the problem posing. Then we reduce the problem to a second-order integrodifferential equation in a Hilbert space. Using this equation, we prove a strong unique solvability problem for the corresponding initial-boundary value problem.
English version:
Journal of Mathematical Sciences, 2010, Volume 164, Issue 4, Pages 531–539
DOI: https://doi.org/10.1007/s10958-010-9761-z
Bibliographic databases:
UDC: 517.9:532
Language: Russian
Citation: D. A. Zakora, “Problem on small motions of ideal rotating relaxing fluid”, Proceedings of the Crimean autumn mathematical school-symposium, CMFD, 29, PFUR, M., 2008, 62–70; Journal of Mathematical Sciences, 164:4 (2010), 531–539
Citation in format AMSBIB
\Bibitem{Zak08}
\by D.~A.~Zakora
\paper Problem on small motions of ideal rotating relaxing fluid
\inbook Proceedings of the Crimean autumn mathematical school-symposium
\serial CMFD
\yr 2008
\vol 29
\pages 62--70
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd124}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2472264}
\transl
\jour Journal of Mathematical Sciences
\yr 2010
\vol 164
\issue 4
\pages 531--539
\crossref{https://doi.org/10.1007/s10958-010-9761-z}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77949300914}
Linking options:
  • https://www.mathnet.ru/eng/cmfd124
  • https://www.mathnet.ru/eng/cmfd/v29/p62
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:288
    Full-text PDF :124
    References:44
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024