Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2007, Volume 25, Pages 182–191 (Mi cmfd115)  

This article is cited in 1 scientific paper (total in 1 paper)

An Equiconvergence Theorem for an Integral Operator with a Variable Upper Limit of Integration

A. P. Khromov

Saratov State University named after N. G. Chernyshevsky
Full-text PDF (139 kB) Citations (1)
References:
Abstract: We suggest simple sufficient conditions on the kernel of the integral operator
$$ Af=\int\limits_0^{1-x}A(1-x,t)f(t)\,dt $$
providing expansion with respect to the root functions to be equiconvergent with ordinary Fourier series.
English version:
Journal of Mathematical Sciences, 2008, Volume 155, Issue 1, Pages 188–198
DOI: https://doi.org/10.1007/s10958-008-9216-y
Bibliographic databases:
UDC: 513.88
Language: Russian
Citation: A. P. Khromov, “An Equiconvergence Theorem for an Integral Operator with a Variable Upper Limit of Integration”, Theory of functions, CMFD, 25, PFUR, M., 2007, 182–191; Journal of Mathematical Sciences, 155:1 (2008), 188–198
Citation in format AMSBIB
\Bibitem{Khr07}
\by A.~P.~Khromov
\paper An Equiconvergence Theorem for an Integral Operator with a~Variable Upper Limit of Integration
\inbook Theory of functions
\serial CMFD
\yr 2007
\vol 25
\pages 182--191
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd115}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2342547}
\zmath{https://zbmath.org/?q=an:1157.45310}
\elib{https://elibrary.ru/item.asp?id=13584338}
\transl
\jour Journal of Mathematical Sciences
\yr 2008
\vol 155
\issue 1
\pages 188--198
\crossref{https://doi.org/10.1007/s10958-008-9216-y}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-55749100989}
Linking options:
  • https://www.mathnet.ru/eng/cmfd115
  • https://www.mathnet.ru/eng/cmfd/v25/p182
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:338
    Full-text PDF :116
    References:46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024