Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2007, Volume 25, Pages 34–48 (Mi cmfd104)  

A Weak Generalize Localization of Multiple Fourier Series of Continuous Functions with a Certain Module of Continuity

I. L. Bloshanskiia, T. A. Matseevichb

a Moscow State Pedagogical University
b Moscow State University of Civil Engineering
References:
Abstract: Let $E$ be an arbitrary measurable set, $E\subset T^N=[-\pi,\pi)^N$, $N\ge 1$, $\mu E>0$, let $\mu$ be a measure. In this paper, a weak generalize almost everywhere localization is studied, i.e., for given subsets $E_1\subset E$, $\mu E_1>0$ we study the almost everywhere convergence of multiple trigonometric Fourier series of functions those are zero on $E$. We obtain sufficient conditions for the almost everywhere convergence of multiple Fourier series (summable over rectangles) of functions from $H^\omega(T^N)$, $\omega(\delta)=o\left(\left[\log\dfrac1\delta\log\log\log\dfrac1\delta\right]^{-1}\right)$, as $\delta\to0$ on $E_1$. These conditions are given in terms of the sets' $E_1$, $E$ structure and geometry and related to certain orthogonal projections of the sets; they are called the $\mathbb{B}_3$ property of the set $E$. Formerly, one of the authors has introduced the $\mathbb B_k$, $k=1,2$ properties of the set $E$, which are related to one-dimensional and two-dimensional projections of the sets $E$ and $E_1$ respectively, as sufficient conditions for the almost everywhere convergence of Fourier series of functions from $L_1(T^N)$ and $L_p(T^N)$, $p>1$. The presented results generalize these ideas.
English version:
Journal of Mathematical Sciences, 2008, Volume 155, Issue 1, Pages 31–46
DOI: https://doi.org/10.1007/s10958-008-9206-0
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: I. L. Bloshanskii, T. A. Matseevich, “A Weak Generalize Localization of Multiple Fourier Series of Continuous Functions with a Certain Module of Continuity”, Theory of functions, CMFD, 25, PFUR, M., 2007, 34–48; Journal of Mathematical Sciences, 155:1 (2008), 31–46
Citation in format AMSBIB
\Bibitem{BloMat07}
\by I.~L.~Bloshanskii, T.~A.~Matseevich
\paper A Weak Generalize Localization of Multiple Fourier Series of Continuous Functions with a~Certain Module of Continuity
\inbook Theory of functions
\serial CMFD
\yr 2007
\vol 25
\pages 34--48
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd104}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2342536}
\zmath{https://zbmath.org/?q=an:1153.42002}
\transl
\jour Journal of Mathematical Sciences
\yr 2008
\vol 155
\issue 1
\pages 31--46
\crossref{https://doi.org/10.1007/s10958-008-9206-0}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-55749100818}
Linking options:
  • https://www.mathnet.ru/eng/cmfd104
  • https://www.mathnet.ru/eng/cmfd/v25/p34
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:525
    Full-text PDF :116
    References:61
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024