Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2007, Volume 25, Pages 8–20 (Mi cmfd102)  

This article is cited in 5 scientific papers (total in 5 papers)

On Conditions of the Average Convergence (Upper Boundedness) of Trigonometric Series

A. S. Belov

Ivanovo State University
Full-text PDF (165 kB) Citations (5)
References:
Abstract: Let $c_n=\widehat f(n)$ be Fourier coefficients of a function $f\in L_{2\pi}$. We prove that the condition
$$ \sum_{k=\left[\frac n2\right]}^{2n}\frac{|c_k|+|c_{-k}|}{|n-k|+1}=o(1) \quad \big(=O(1)\big) $$
is necessary for the convergence of the Fourier series of $f$ in the $L$-metric; moreover, this condition is sufficient under some additional hypothesis for Fourier coefficients of $f$.
English version:
Journal of Mathematical Sciences, 2008, Volume 155, Issue 1, Pages 5–17
DOI: https://doi.org/10.1007/s10958-008-9204-2
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: A. S. Belov, “On Conditions of the Average Convergence (Upper Boundedness) of Trigonometric Series”, Theory of functions, CMFD, 25, PFUR, M., 2007, 8–20; Journal of Mathematical Sciences, 155:1 (2008), 5–17
Citation in format AMSBIB
\Bibitem{Bel07}
\by A.~S.~Belov
\paper On Conditions of the Average Convergence (Upper Boundedness) of Trigonometric Series
\inbook Theory of functions
\serial CMFD
\yr 2007
\vol 25
\pages 8--20
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd102}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2342534}
\zmath{https://zbmath.org/?q=an:1154.42001}
\transl
\jour Journal of Mathematical Sciences
\yr 2008
\vol 155
\issue 1
\pages 5--17
\crossref{https://doi.org/10.1007/s10958-008-9204-2}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-55749115588}
Linking options:
  • https://www.mathnet.ru/eng/cmfd102
  • https://www.mathnet.ru/eng/cmfd/v25/p8
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:541
    Full-text PDF :164
    References:65
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024