Chelyabinskiy Fiziko-Matematicheskiy Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chelyab. Fiz.-Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chelyabinskiy Fiziko-Matematicheskiy Zhurnal, 2018, Volume 3, Issue 2, Pages 153–171
DOI: https://doi.org/10.24411/2500-0101-2018-13203
(Mi chfmj96)
 

This article is cited in 1 scientific paper (total in 1 paper)

Mathematics

Linear inverse problems for a class of equations of Sobolev type

A. I. Kozhanovab, G. V. Namsaraevac

a Sobolev Institute of Mathematics of SB RAS, Novosibirsk, Russia
b Novosibirsk State University (National Research University), Novosibirsk, Russia
c East Siberia State University of Technology and Management, Ulan-Ude, Russia
Full-text PDF (765 kB) Citations (1)
References:
Abstract: We study the solvability of inverse problems of finding together with the solution $u(x,t)$ also an unknown factor $q(t)$ in equation
$$D^{2p}_t(u-\Delta u)+Bu=f_0(x,t)+q(t)h_0(x,t)$$
($t\in (0,T)$, $x\in\Omega\subset \mathbb{R}^n$, $p$ is a natural number, $D^k_t=\frac{\partial^k}{\partial t^k}$, $\Delta$ is the Laplace operator with respect to the spatial variables, $B$ is a linear second-order differential operator, acting also on the spatial variables, $f_0(x,t)$ and $h_0(x,t)$ are given functions). Integral overdetermination condition is used as an additional condition in these problems. The existence and uniqueness theorems for regular solutions (i. e. having all the generalized derivatives in the sense of S.L. Sobolev, presenting in the equation) are proved.
Keywords: Sobolev type equation, inverse problem, unknown right-hand side, integral overdetermination, regular solution, solution existence, solution uniqueness.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00620
Received: 12.04.2018
Revised: 03.05.2018
Document Type: Article
UDC: 517.95
Language: Russian
Citation: A. I. Kozhanov, G. V. Namsaraeva, “Linear inverse problems for a class of equations of Sobolev type”, Chelyab. Fiz.-Mat. Zh., 3:2 (2018), 153–171
Citation in format AMSBIB
\Bibitem{KozNam18}
\by A.~I.~Kozhanov, G.~V.~Namsaraeva
\paper Linear inverse problems for a class of equations of Sobolev type
\jour Chelyab. Fiz.-Mat. Zh.
\yr 2018
\vol 3
\issue 2
\pages 153--171
\mathnet{http://mi.mathnet.ru/chfmj96}
\crossref{https://doi.org/10.24411/2500-0101-2018-13203}
Linking options:
  • https://www.mathnet.ru/eng/chfmj96
  • https://www.mathnet.ru/eng/chfmj/v3/i2/p153
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Chelyabinskiy Fiziko-Matematicheskiy Zhurnal
    Statistics & downloads:
    Abstract page:446
    Full-text PDF :197
    References:70
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024