Chelyabinskiy Fiziko-Matematicheskiy Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chelyab. Fiz.-Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chelyabinskiy Fiziko-Matematicheskiy Zhurnal, 2018, Volume 3, Issue 2, Pages 129–143
DOI: https://doi.org/10.24411/2500-0101-2018-13201
(Mi chfmj94)
 

Mathematics

Representation of solutions to the Euler type differential equation of fractional order using the fractional analogue of the Green's function

N. V. Zhukovskaya

Belgorod State National Research University, Belgorod, Russia
References:
Abstract: A solution to the nonhomogeneous Euler-type differential equation with Riemann — Liouville fractional derivatives on the half-axis $(0;+\infty)$ in the class ${ I}_{0+}^{\alpha}\left({ L}_{1}(0;+\infty)\right)$ of functions represented by the fractional integral of the order of $\alpha$ with a density from ${ L}_{1}(0;+\infty)$ in terms of the fractional analogue of the Green's function is given by using the direct and inverse Mellin transforms. Fractional analogues of the Green's function are constructed in the case when all roots of the characteristic polynomial are different, and also in the case when there are multiple roots among the roots of the characteristic polynomial. Theorems of solvability of the nonhomogeneous fractional differential equations of Euler-type on the half-axis $(0;+\infty)$ are formulated and proved. Special cases and examples are considered.
Keywords: fractional Riemann — Liouville integral, Riemann — Liouville fractional derivative, direct and inverse Mellin transforms, fractional analogue of the Green's function.
Received: 21.04.2018
Revised: 04.05.2018
Document Type: Article
UDC: 517.923
Language: Russian
Citation: N. V. Zhukovskaya, “Representation of solutions to the Euler type differential equation of fractional order using the fractional analogue of the Green's function”, Chelyab. Fiz.-Mat. Zh., 3:2 (2018), 129–143
Citation in format AMSBIB
\Bibitem{Zhu18}
\by N.~V.~Zhukovskaya
\paper Representation of solutions to the Euler type differential equation of fractional order using the fractional analogue of the Green's function
\jour Chelyab. Fiz.-Mat. Zh.
\yr 2018
\vol 3
\issue 2
\pages 129--143
\mathnet{http://mi.mathnet.ru/chfmj94}
\crossref{https://doi.org/10.24411/2500-0101-2018-13201}
Linking options:
  • https://www.mathnet.ru/eng/chfmj94
  • https://www.mathnet.ru/eng/chfmj/v3/i2/p129
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Chelyabinskiy Fiziko-Matematicheskiy Zhurnal
    Statistics & downloads:
    Abstract page:283
    Full-text PDF :85
    References:62
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024