Chelyabinskiy Fiziko-Matematicheskiy Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chelyab. Fiz.-Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chelyabinskiy Fiziko-Matematicheskiy Zhurnal, 2017, Volume 2, Issue 3, Pages 257–265 (Mi chfmj61)  

This article is cited in 1 scientific paper (total in 1 paper)

Mathematics

On refinements of neo-classical inequality and its applications to stochastic differential equations and Brownian motion

D. S. Doncheva, S. M. Sitnikb, E. L. Shishkinac

a Sofia University "St. Kliment Okhridski", Sofia, Bulgaria
b Belgorod State National Research University, Belgorod, Russia
c Voronezh State University, Voronezh, Russia
Full-text PDF (675 kB) Citations (1)
References:
Abstract: In this article some estimates are refined for the best constant in the well-known so called neo-classical inequality, which is the generalization of the Newton binomial formula in terms of Wright — Fox functions. The results of this article are applied to stochastic differential equations, Brownian motion and estimates of probability distributions.
Keywords: neo-classical inequality, stochastic differential inequality, Wright — Fox function, Berry — Essen inequality, Meller — König — Zeller operators.
Received: 09.10.2017
Revised: 20.10.2017
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: D. S. Donchev, S. M. Sitnik, E. L. Shishkina, “On refinements of neo-classical inequality and its applications to stochastic differential equations and Brownian motion”, Chelyab. Fiz.-Mat. Zh., 2:3 (2017), 257–265
Citation in format AMSBIB
\Bibitem{DonSitShi17}
\by D.~S.~Donchev, S.~M.~Sitnik, E.~L.~Shishkina
\paper On refinements of neo-classical inequality and its applications to stochastic differential equations and Brownian motion
\jour Chelyab. Fiz.-Mat. Zh.
\yr 2017
\vol 2
\issue 3
\pages 257--265
\mathnet{http://mi.mathnet.ru/chfmj61}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=223543}
\elib{https://elibrary.ru/item.asp?id=30487860}
Linking options:
  • https://www.mathnet.ru/eng/chfmj61
  • https://www.mathnet.ru/eng/chfmj/v2/i3/p257
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Chelyabinskiy Fiziko-Matematicheskiy Zhurnal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024