Chelyabinskiy Fiziko-Matematicheskiy Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chelyab. Fiz.-Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chelyabinskiy Fiziko-Matematicheskiy Zhurnal, 2022, Volume 7, Issue 4, Pages 447–465
DOI: https://doi.org/10.47475/2500-0101-2022-17405
(Mi chfmj301)
 

Mathematics

Dynamics of a family of maps defined by quadratic polynomials

J. Jaurez-Rosas, H. Méndez

Universidad Nacional Autónoma de México, Mexico City, Mexico
References:
Abstract: We consider maps $F \colon {\mathbb R}^{2} \rightarrow \mathbb R^{2}$, whose coordinates are homogeneous polynomials in $\mathbb R[x, y]$ of degree $2$. These maps send lines passing through the origin into lines passing through the origin. Our goal is to study how these lines are moved under the action of $F$. We show that there is a real analytic variety $\mathcal{F}^{2}$, where two sets can be clearly distinguished. One set $\mathcal{U} \subseteq \mathcal{F}^{2}$ is made up of transformations that have "hidden hyperbolic" dynamics, and its complement $\mathcal{F}^{2} \setminus \mathcal{U}$ contains maps that show a chaotic behavior.
Keywords: polynomial map, circle map, chaotic dynamics.
Funding agency Grant number
Direccion General de Asuntos del Personal Academico, Universidad Nacional Autonoma de Mexico
The first author was supported by a postdoctoral fellowship from DGAPA-UNAM.
Received: 12.10.2021
Revised: 03.08.2022
Document Type: Article
UDC: 517.925
Language: English
Citation: J. Jaurez-Rosas, H. Méndez, “Dynamics of a family of maps defined by quadratic polynomials”, Chelyab. Fiz.-Mat. Zh., 7:4 (2022), 447–465
Citation in format AMSBIB
\Bibitem{JauMen22}
\by J.~Jaurez-Rosas, H.~M{\'e}ndez
\paper Dynamics of a family of maps defined by quadratic polynomials
\jour Chelyab. Fiz.-Mat. Zh.
\yr 2022
\vol 7
\issue 4
\pages 447--465
\mathnet{http://mi.mathnet.ru/chfmj301}
\crossref{https://doi.org/10.47475/2500-0101-2022-17405}
Linking options:
  • https://www.mathnet.ru/eng/chfmj301
  • https://www.mathnet.ru/eng/chfmj/v7/i4/p447
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Chelyabinskiy Fiziko-Matematicheskiy Zhurnal
    Statistics & downloads:
    Abstract page:56
    Full-text PDF :14
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024