Chelyabinskiy Fiziko-Matematicheskiy Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chelyab. Fiz.-Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chelyabinskiy Fiziko-Matematicheskiy Zhurnal, 2022, Volume 7, Issue 2, Pages 234–253
DOI: https://doi.org/10.47475/2500-0101-2022-17206
(Mi chfmj283)
 

This article is cited in 1 scientific paper (total in 1 paper)

Mathematics

Identification of a boundary condition in the heat and mass transfer problems

S. G. Pyatkov, V. A. Baranchuk

Yugra State University, Khanty-Mansiysk, Russia
Full-text PDF (781 kB) Citations (1)
References:
Abstract: We consider well-posedness in Sobolev spaces of inverse problems of recovering a function occurring in the Robin boundary condition in the parabolic case. The existence and uniqueness theorem are exhibited. The proof relies on a priori estimates obtained and the method of continuation in a parameter. The method is constructive and the approach allows to develop numerical methods for solving the problem.
Keywords: inverse problem, heat and mass transfer, parabolic equation, Robin boundary condition.
Funding agency Grant number
Russian Science Foundation 22-11-20031
The work was supported by a grant from the Russian Science Foundation and the Government of the Khanty-Mansiysk Autonomous Okrug — Yugra (project no. 22-11-20031).
Received: 04.04.2022
Revised: 13.05.2022
Bibliographic databases:
Document Type: Article
UDC: 517.95
Language: Russian
Citation: S. G. Pyatkov, V. A. Baranchuk, “Identification of a boundary condition in the heat and mass transfer problems”, Chelyab. Fiz.-Mat. Zh., 7:2 (2022), 234–253
Citation in format AMSBIB
\Bibitem{PyaBar22}
\by S.~G.~Pyatkov, V.~A.~Baranchuk
\paper Identification of a boundary condition in the heat and mass transfer problems
\jour Chelyab. Fiz.-Mat. Zh.
\yr 2022
\vol 7
\issue 2
\pages 234--253
\mathnet{http://mi.mathnet.ru/chfmj283}
\crossref{https://doi.org/10.47475/2500-0101-2022-17206}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4460046}
Linking options:
  • https://www.mathnet.ru/eng/chfmj283
  • https://www.mathnet.ru/eng/chfmj/v7/i2/p234
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Chelyabinskiy Fiziko-Matematicheskiy Zhurnal
    Statistics & downloads:
    Abstract page:122
    Full-text PDF :41
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024