Chelyabinskiy Fiziko-Matematicheskiy Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chelyab. Fiz.-Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chelyabinskiy Fiziko-Matematicheskiy Zhurnal, 2022, Volume 7, Issue 1, Pages 113–122
DOI: https://doi.org/10.47475/2500-0101-2022-17108
(Mi chfmj274)
 

This article is cited in 3 scientific papers (total in 3 papers)

Mathematics

Nonlocal problem for a nonlinear system of fractional order impulsive integro-differential equationswith maxima

T. K. Yuldashev, Kh. Kh. Saburov, T. A. Abduvahobov

National University of Uzbekistan, Tashkent, Uzbekistan
Full-text PDF (689 kB) Citations (3)
References:
Abstract: A nonlocal boundary value problem for a system of ordinary integro-differential equations with impulsive effects, maxima and fractional Gerasimov — Caputo operator is investigated. The boundary value condition is given in the integral form. The method of successive approximations in combination with the method of compressing mapping is used. The existence and uniqueness of a solution of the boundary value problem are proved.
Keywords: impulsive integro-differential equation, Gerasimov — Caputo operator, nonlocal boundary condition, successive approximations, unique solvability.
Received: 29.12.2021
Revised: 27.02.2022
Bibliographic databases:
Document Type: Article
UDC: 517.911
Language: English
Citation: T. K. Yuldashev, Kh. Kh. Saburov, T. A. Abduvahobov, “Nonlocal problem for a nonlinear system of fractional order impulsive integro-differential equationswith maxima”, Chelyab. Fiz.-Mat. Zh., 7:1 (2022), 113–122
Citation in format AMSBIB
\Bibitem{YulSabAbd22}
\by T.~K.~Yuldashev, Kh.~Kh.~Saburov, T.~A.~Abduvahobov
\paper Nonlocal problem for a nonlinear system of fractional order impulsive integro-differential equations\\ with maxima
\jour Chelyab. Fiz.-Mat. Zh.
\yr 2022
\vol 7
\issue 1
\pages 113--122
\mathnet{http://mi.mathnet.ru/chfmj274}
\crossref{https://doi.org/10.47475/2500-0101-2022-17108}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4409135}
Linking options:
  • https://www.mathnet.ru/eng/chfmj274
  • https://www.mathnet.ru/eng/chfmj/v7/i1/p113
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Chelyabinskiy Fiziko-Matematicheskiy Zhurnal
    Statistics & downloads:
    Abstract page:196
    Full-text PDF :65
    References:48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024