|
This article is cited in 1 scientific paper (total in 1 paper)
Mathematics
$\rho$-Almost periodic type functions in ${\mathbb R}^{n}$
M. Kostić University of Novi Sad, Novi Sad, Serbia
Abstract:
We investigate various classes of multi-dimensional $(S,{\mathbb D}, {\mathcal B})$-asymptotically
$(\omega,\rho)$-periodic type functions,
multi-dimensional quasi-asymptotically $\rho$-almost periodic type functions and multi-dimensional $\rho$-slowly oscillating type functions of the form $F : I \times X \rightarrow Y,$ where
$n\in {\mathbb N},$
$\emptyset \neq I \subseteq {\mathbb R}^{n},$ $\omega \in {\mathbb R}^{n} \setminus \{0\},$ $X$ and $Y$ are complex Banach spaces and $\rho$ is a binary relation on $Y.$
The main structural properties
of these classes of almost periodic type functions
are deduced.
We also provide certain applications of our results to
the abstract Volterra integro-differential equations.
Keywords:
$(S,{\mathbb D}, {\mathcal B})$-asymptotically
$(\omega,\rho)$-periodic type functions, quasi-asymptotically $\rho$-almost periodic type functions, remotely $\rho$-almost periodic type functions, $\rho$-slowly oscillating type functions,
abstract Volterra integro-differential equations.
Received: 14.10.2021 Revised: 03.03.2022
Citation:
M. Kostić, “$\rho$-Almost periodic type functions in ${\mathbb R}^{n}$”, Chelyab. Fiz.-Mat. Zh., 7:1 (2022), 80–96
Linking options:
https://www.mathnet.ru/eng/chfmj272 https://www.mathnet.ru/eng/chfmj/v7/i1/p80
|
Statistics & downloads: |
Abstract page: | 123 | Full-text PDF : | 37 | References: | 28 |
|