Chelyabinskiy Fiziko-Matematicheskiy Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chelyab. Fiz.-Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chelyabinskiy Fiziko-Matematicheskiy Zhurnal, 2021, Volume 6, Issue 3, Pages 289–298
DOI: https://doi.org/10.47475/2500-0101-2021-16303
(Mi chfmj244)
 

This article is cited in 1 scientific paper (total in 1 paper)

Mathematics

Partial integral operators of non-negative orders in weighted Lebesgue spaces

L. N. Lyakhovabc, N. I. Trusovab

a Voronezh State University, Voronezh, Russia
b Lipetsk State Pedagogical University named after P.P. Semenov-Tyan-Shanskiy, Lipetsk, Russia
c Bunin Yelets State University, Yelets, Russia
Full-text PDF (791 kB) Citations (1)
References:
Abstract: We study a weighted partial integral operator in a weighted Lebesgue space $L_p^{\gamma}(D)$ with a measure of integration $d\mu_\gamma(x)=x^\gamma dx$ in $\mathbb{R}_2 $ and $\mathbb{R}_n$. The concept of the order of a weighted partial integral operator is introduced. A sufficient condition for such operators to be bounded in $L_p^\gamma$ is obtained.
Keywords: partial integral operator, weighted partial integral operator, weighted anisotropic Lebesgue space.
Funding agency Grant number
Russian Foundation for Basic Research 19-41-480002
he work is funded by the Russian Foundation for Basic Research, project 19-41-480002.
Received: 18.07.2021
Revised: 30.08.2021
Document Type: Article
UDC: 517.983
Language: Russian
Citation: L. N. Lyakhov, N. I. Trusova, “Partial integral operators of non-negative orders in weighted Lebesgue spaces”, Chelyab. Fiz.-Mat. Zh., 6:3 (2021), 289–298
Citation in format AMSBIB
\Bibitem{LyaTru21}
\by L.~N.~Lyakhov, N.~I.~Trusova
\paper Partial integral operators of non-negative orders in weighted Lebesgue spaces
\jour Chelyab. Fiz.-Mat. Zh.
\yr 2021
\vol 6
\issue 3
\pages 289--298
\mathnet{http://mi.mathnet.ru/chfmj244}
\crossref{https://doi.org/10.47475/2500-0101-2021-16303}
Linking options:
  • https://www.mathnet.ru/eng/chfmj244
  • https://www.mathnet.ru/eng/chfmj/v6/i3/p289
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Chelyabinskiy Fiziko-Matematicheskiy Zhurnal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024