Chelyabinskiy Fiziko-Matematicheskiy Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chelyab. Fiz.-Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chelyabinskiy Fiziko-Matematicheskiy Zhurnal, 2019, Volume 4, Issue 2, Pages 142–154
DOI: https://doi.org/10.24411/2500-0101-2019-14202
(Mi chfmj134)
 

This article is cited in 2 scientific papers (total in 2 papers)

Mathematics

Sturm — Liouville problem for an equation with a discontinuous nonlinearity

V. N. Pavlenko, E. Yu. Postnikova

Chelyabinsk State University, Chelyabinsk, Russia
Full-text PDF (739 kB) Citations (2)
References:
Abstract: On the segment $ [0, 1] $, we consider the Sturm — Liouville problem with a discontinuous nonlinearity on the right-hand side multiplied by a positive parameter. For nonnegative values of the phase variable $u$ the nonlinearity is zero, and for negative values it coincides with a continuous function on $ [0,1] \times (- \infty; 0] $. The boundary conditions are $ u (0) = a $, $ u (1) = b $, where $ a, b $ are positive numbers. The initial problem is converted to an equivalent homogeneous one, which for all positive values of the parameter has a zero solution. Its spectrum consists of those parameter values for which the boundary value problem has a nonzero solution. Assuming sublinear growth of nonlinearity at infinity for each positive value of the parameter we construct an iterative process that converges monotonically to the minimal solution. It is proved that the spectrum of the problem is of the form $ [C; + \infty) $, where $ C> 0 $, if it is non-empty.
Keywords: nonlinear spectral problem, Sturm — Liouville equation, discontinuous nonlinearity, monotone iterations.
Received: 29.11.2018
Revised: 06.05.2019
Bibliographic databases:
Document Type: Article
UDC: 517.927.4; 517.98
Language: Russian
Citation: V. N. Pavlenko, E. Yu. Postnikova, “Sturm — Liouville problem for an equation with a discontinuous nonlinearity”, Chelyab. Fiz.-Mat. Zh., 4:2 (2019), 142–154
Citation in format AMSBIB
\Bibitem{PavPos19}
\by V.~N.~Pavlenko, E.~Yu.~Postnikova
\paper Sturm~--- Liouville problem for an equation with a discontinuous nonlinearity
\jour Chelyab. Fiz.-Mat. Zh.
\yr 2019
\vol 4
\issue 2
\pages 142--154
\mathnet{http://mi.mathnet.ru/chfmj134}
\crossref{https://doi.org/10.24411/2500-0101-2019-14202}
\elib{https://elibrary.ru/item.asp?id=38188424}
Linking options:
  • https://www.mathnet.ru/eng/chfmj134
  • https://www.mathnet.ru/eng/chfmj/v4/i2/p142
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Chelyabinskiy Fiziko-Matematicheskiy Zhurnal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024