Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2020, Volume 21, Issue 4, Pages 270–301
DOI: https://doi.org/10.22405/2226-8383-2018-21-4-270-301
(Mi cheb968)
 

This article is cited in 2 scientific papers (total in 2 papers)

A generalized Binomial theorem and a summation formulae

V. N. Chubarikov

Lomonosov Moscow State University (Moscow)
Full-text PDF (711 kB) Citations (2)
References:
Abstract: The paper is based on the Binomial theorem and its generalizations to the polynomials of binomial type. Thus, we give some applications to the generalized Waring problemm (Loo-Keng Hua) and Hilbert-Kamke problem (G.I.Arkhipov). We also prove Taylor-Maclaurin formula for the polynomials and smooth functions and give its applications to the numerical analysis (Newton's root-finding algorithm, Hensel lemma in full non-archimedian fields, approximate evaluaion of the function at given point). Next, we prove an analogue of Binomial theorem for Bernoulli polynomials, Euler-Maclaurin summation formula over integers and Poisson summation formula for the lattice and consider some examples of binomial-type polynomials (monomials, rising and falling factorials, Abel and Laguerre polynomials). We prove some binomial properties op Appel and Euler polynomials and establish the multidimensional Taylor formula and the analogues of Euler-Maclaurin and Poisson summation formulas over the lattices. Finally, we consider the multidimensional analogues of these formulas for the multidimensional complex space and prove some properties of binomial-type polynomials of several variables.
Keywords: the Newton binomial formula, a sequence of the binomial type polynomials, lower and upper factoriales, the Abel, Laguerre, Appell, Bernoulli, Euler polynomials, the Taylor–Maclauren formula, the Euler–Maclauren formula.
Received: 04.04.2019
Accepted: 22.10.2020
Document Type: Article
UDC: 511.3
Language: Russian
Citation: V. N. Chubarikov, “A generalized Binomial theorem and a summation formulae”, Chebyshevskii Sb., 21:4 (2020), 270–301
Citation in format AMSBIB
\Bibitem{Chu20}
\by V.~N.~Chubarikov
\paper A generalized Binomial theorem and a summation formulae
\jour Chebyshevskii Sb.
\yr 2020
\vol 21
\issue 4
\pages 270--301
\mathnet{http://mi.mathnet.ru/cheb968}
\crossref{https://doi.org/10.22405/2226-8383-2018-21-4-270-301}
Linking options:
  • https://www.mathnet.ru/eng/cheb968
  • https://www.mathnet.ru/eng/cheb/v21/i4/p270
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:245
    Full-text PDF :236
    References:48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024