Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2020, Volume 21, Issue 4, Pages 107–116
DOI: https://doi.org/10.22405/2226-8383-2018-21-4-107-116
(Mi cheb956)
 

This article is cited in 2 scientific papers (total in 2 papers)

$\omega\sigma$-fibered Fitting classes

O. V. Kamozina

Bryansk State University of Engineering and Technology (Bryansk)
Full-text PDF (656 kB) Citations (2)
References:
Abstract: The paper considers only finite groups. A class of groups $\mathfrak F$ is called a Fitting class if it is closed under normal subgroups and products of normal $\mathfrak F$-subgroups; formation, if it is closed with respect to factor groups and subdirect products; Fitting formation if $\mathfrak F$ is a formation and Fitting class at the same time.
For a nonempty subset $\omega$ of the set of primes $\mathbb P$ and the partition $\sigma =\{\sigma_i\mid i\in I\}$, where $\mathbb P=\cup_{i\in I}\sigma _i$ and $\sigma_i\cap\sigma_j=\varnothing$ for all $i\not =j$, we introduce the $\omega\sigma R$-function $f$ and $\omega\sigma FR$-function $\varphi$. The domain of these functions is the set $\omega\sigma\cup\{\omega'\}$, where $\omega\sigma=\{ \omega\cap\sigma_i\mid\omega\cap\sigma_i\not =\varnothing\}$, $\omega'=\mathbb P\setminus\omega$. The range of function values is the set of Fitting classes and the set of nonempty Fitting formations, respectively. The functions $f$ and $\varphi$ are used to determine the $\omega\sigma$-fibered Fitting class $\mathfrak F=\omega\sigma R(f,\varphi)=(G: O^{\omega} (G)\in f(\omega' )$ and $G^{\varphi (\omega\cap\sigma_i )} \in f(\omega\cap\sigma_i )$ for all $\omega\cap\sigma_i \in\omega\sigma (G))$ with the $\omega\sigma$-satellite $f$ and the $\omega\sigma$-direction $\varphi$.
The paper gives examples of $\omega\sigma$-fibered Fitting classes. Two types of $\omega\sigma$-fibered Fitting classes are distinguished: $\omega\sigma$-complete and $\omega\sigma$-local Fitting classes. Their directions are indicated by $\varphi_0$ and $\varphi_1$, respectively. It is shown that each nonempty nonidentity Fitting class is an $\omega\sigma$-complete Fitting class for some nonempty set $\omega\subseteq\mathbb P$ and any partition $\sigma$. A number of properties of $\omega\sigma$-fibered Fitting classes are obtained. In particular, a definition of an internal $\omega\sigma$-satellite is given and it is shown that each $\omega\sigma$-fibered Fitting class always has an internal $\omega\sigma$-satellite. For $\omega=\mathbb P$, the concept of a $\sigma$-fibered Fitting class is introduced. The connection between $\omega\sigma$-fibered and $\sigma$-fibered Fitting classes is shown.
Keywords: finite group, Fitting class, $\omega\sigma$-fibered, $\omega\sigma$-satellite, $\omega\sigma$-direction.
Received: 12.10.2019
Accepted: 22.10.2020
Document Type: Article
UDC: 512.542
Language: Russian
Citation: O. V. Kamozina, “$\omega\sigma$-fibered Fitting classes”, Chebyshevskii Sb., 21:4 (2020), 107–116
Citation in format AMSBIB
\Bibitem{Kam20}
\by O.~V.~Kamozina
\paper $\omega\sigma$-fibered Fitting classes
\jour Chebyshevskii Sb.
\yr 2020
\vol 21
\issue 4
\pages 107--116
\mathnet{http://mi.mathnet.ru/cheb956}
\crossref{https://doi.org/10.22405/2226-8383-2018-21-4-107-116}
Linking options:
  • https://www.mathnet.ru/eng/cheb956
  • https://www.mathnet.ru/eng/cheb/v21/i4/p107
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:113
    Full-text PDF :37
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024