Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2020, Volume 21, Issue 4, Pages 56–71
DOI: https://doi.org/10.22405/2226-8383-2018-21-4-56-71
(Mi cheb952)
 

On “simple” algorithmically undecidable fragments of elementary theory of an infinitely generated free semigroup

V. G. Durnev, O. V. Zetkina, A. I. Zetkina

P. G. Demidov Yaroslavl' University (Yaroslavl')
References:
Abstract: We prove algorithmic undecidability of $\exists \forall^2 \exists^3$-theory for a free semigroup of countable rank. This strengthens the classical Quine's (1946) result [1] on algorithmic undecidability of elementary theory of an arbitrary non-cyclic free semigroup.
Keywords: free semigroups, elementary theories.
Received: 24.04.2020
Accepted: 22.10.2020
Document Type: Article
UDC: 512+512.5+512.54+512.54.03
Language: Russian
Citation: V. G. Durnev, O. V. Zetkina, A. I. Zetkina, “On “simple” algorithmically undecidable fragments of elementary theory of an infinitely generated free semigroup”, Chebyshevskii Sb., 21:4 (2020), 56–71
Citation in format AMSBIB
\Bibitem{DurZetZet20}
\by V.~G.~Durnev, O.~V.~Zetkina, A.~I.~Zetkina
\paper On ``simple'' algorithmically undecidable fragments of elementary theory of an infinitely generated free semigroup
\jour Chebyshevskii Sb.
\yr 2020
\vol 21
\issue 4
\pages 56--71
\mathnet{http://mi.mathnet.ru/cheb952}
\crossref{https://doi.org/10.22405/2226-8383-2018-21-4-56-71}
Linking options:
  • https://www.mathnet.ru/eng/cheb952
  • https://www.mathnet.ru/eng/cheb/v21/i4/p56
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:138
    Full-text PDF :34
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024