|
BRIEF MESSAGE
Best quadrature formulas calculation of curvilinear integrals for some classes of functions and currves
M. Sh. Shabozov, M. K. Abdukarimzoda Tajik National University
(Dushanbe)
Abstract:
For an approximate calculation of a curvilinear integral $$J(f;\Gamma):=\int\limits_{\Gamma}f(x_1,x_2,\ldots,x_m)dt$$ when the curve $\Gamma$ is given by parametric equations $$x_{1}=\varphi_{1}(t), x_{2}=\varphi_{2}(t),\ldots,x_{m}=\varphi_{m}(t), 0\leq t\leq L$$ the quadrature formula is entered into consideration $$J(f;\Gamma):\approx\sum_{k=1}^{N}p_{k} f\Bigl(\varphi_{1}(t_k), \varphi_{2}(t_k), \ldots, \varphi_{m}(t_k)\Bigr),$$ where $P=\left\{p_{k}\right\}_{k=1}^{N}$ and $T:=\left\{t_{k}:0\leq t_{1}<t_{2}<\cdots<t_{N}\leq L\right\}$– are arbitrary vector coefficients and nodes. Let $H^{\omega_{1},\ldots,\omega_{m}}[0,L]$– sets of curves $\Gamma$, whose coordinate functions $\varphi_{i}(t)\in H^{\omega_{i}}[0,L] \ (i=\overline{1,m}),$ where $\omega_{i}(t) \ (i=\overline{1,m})$– are given moduli of continuity $\mathfrak{M}_{\rho}^{\omega,p}$– functions class $f(M),$ defined in point $M\in\Gamma,$ such for any two points $M^{\prime}=M(x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{m}^{\prime}),$ $M^{\prime\prime}=M(x_{1}^{\prime\prime},x_{2}^{\prime\prime},\ldots,x_{m}^{\prime\prime})$ belonging to a curve $\Gamma \in H^{\omega_{1},\ldots,\omega_{m}}[0,L]$ satsify the condition $$\Bigl|f(M^{\prime})-f(M^{\prime\prime})\Bigr|\le\omega(\rho_{p}(M^{\prime}, M^{\prime\prime})),$$ where $$\rho_{p}(M^{\prime}, M^{\prime\prime})=\left\{\sum_{i=1}^{m}|x^{\prime}_{i}-x_{i}^{\prime\prime}|^{p}\right\}^{1/p}, \ 1\leq p\leq \infty,$$ $\omega(t)$– given moduls of continuity. It is proved that among all quadrature formulas of the above from, the best for a class of functions $\mathfrak{M}_{\rho}^{\omega,p}$ and a class of curves $H^{\omega_{1},\ldots,\omega_{m}}[0,1]$, is the formula of average rectangles.
The exact error estimate of the best quadrature formula is calculated for all the functional classes under consideration and the curves are given a generalization for more general classes of functions.
Keywords:
curvilinear integral, quadrature formula, error, rectangle formula, functions class, nodes.
Received: 21.02.2020 Accepted: 22.10.2020
Citation:
M. Sh. Shabozov, M. K. Abdukarimzoda, “Best quadrature formulas calculation of curvilinear integrals for some classes of functions and currves”, Chebyshevskii Sb., 21:3 (2020), 250–261
Linking options:
https://www.mathnet.ru/eng/cheb940 https://www.mathnet.ru/eng/cheb/v21/i3/p250
|
|