Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2020, Volume 21, Issue 3, Pages 250–261
DOI: https://doi.org/10.22405/2226-8383-2018-21-3-250-261
(Mi cheb940)
 

BRIEF MESSAGE

Best quadrature formulas calculation of curvilinear integrals for some classes of functions and currves

M. Sh. Shabozov, M. K. Abdukarimzoda

Tajik National University (Dushanbe)
References:
Abstract: For an approximate calculation of a curvilinear integral
$$J(f;\Gamma):=\int\limits_{\Gamma}f(x_1,x_2,\ldots,x_m)dt$$
when the curve $\Gamma$ is given by parametric equations
$$x_{1}=\varphi_{1}(t), x_{2}=\varphi_{2}(t),\ldots,x_{m}=\varphi_{m}(t), 0\leq t\leq L$$
the quadrature formula is entered into consideration
$$J(f;\Gamma):\approx\sum_{k=1}^{N}p_{k} f\Bigl(\varphi_{1}(t_k), \varphi_{2}(t_k), \ldots, \varphi_{m}(t_k)\Bigr),$$
where $P=\left\{p_{k}\right\}_{k=1}^{N}$ and $T:=\left\{t_{k}:0\leq t_{1}<t_{2}<\cdots<t_{N}\leq L\right\}$– are arbitrary vector coefficients and nodes. Let $H^{\omega_{1},\ldots,\omega_{m}}[0,L]$– sets of curves $\Gamma$, whose coordinate functions $\varphi_{i}(t)\in H^{\omega_{i}}[0,L] \ (i=\overline{1,m}),$ where $\omega_{i}(t) \ (i=\overline{1,m})$– are given moduli of continuity $\mathfrak{M}_{\rho}^{\omega,p}$– functions class $f(M),$ defined in point $M\in\Gamma,$ such for any two points $M^{\prime}=M(x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{m}^{\prime}),$ $M^{\prime\prime}=M(x_{1}^{\prime\prime},x_{2}^{\prime\prime},\ldots,x_{m}^{\prime\prime})$ belonging to a curve $\Gamma \in H^{\omega_{1},\ldots,\omega_{m}}[0,L]$ satsify the condition
$$\Bigl|f(M^{\prime})-f(M^{\prime\prime})\Bigr|\le\omega(\rho_{p}(M^{\prime}, M^{\prime\prime})),$$
where
$$\rho_{p}(M^{\prime}, M^{\prime\prime})=\left\{\sum_{i=1}^{m}|x^{\prime}_{i}-x_{i}^{\prime\prime}|^{p}\right\}^{1/p}, \ 1\leq p\leq \infty,$$
$\omega(t)$– given moduls of continuity. It is proved that among all quadrature formulas of the above from, the best for a class of functions $\mathfrak{M}_{\rho}^{\omega,p}$ and a class of curves $H^{\omega_{1},\ldots,\omega_{m}}[0,1]$, is the formula of average rectangles.
The exact error estimate of the best quadrature formula is calculated for all the functional classes under consideration and the curves are given a generalization for more general classes of functions.
Keywords: curvilinear integral, quadrature formula, error, rectangle formula, functions class, nodes.
Received: 21.02.2020
Accepted: 22.10.2020
Document Type: Article
UDC: 517.5
Language: Russian
Citation: M. Sh. Shabozov, M. K. Abdukarimzoda, “Best quadrature formulas calculation of curvilinear integrals for some classes of functions and currves”, Chebyshevskii Sb., 21:3 (2020), 250–261
Citation in format AMSBIB
\Bibitem{ShaAbd20}
\by M.~Sh.~Shabozov, M.~K.~Abdukarimzoda
\paper Best quadrature formulas calculation of curvilinear integrals for some classes of functions and currves
\jour Chebyshevskii Sb.
\yr 2020
\vol 21
\issue 3
\pages 250--261
\mathnet{http://mi.mathnet.ru/cheb940}
\crossref{https://doi.org/10.22405/2226-8383-2018-21-3-250-261}
Linking options:
  • https://www.mathnet.ru/eng/cheb940
  • https://www.mathnet.ru/eng/cheb/v21/i3/p250
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:102
    Full-text PDF :35
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024