Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2020, Volume 21, Issue 3, Pages 232–240
DOI: https://doi.org/10.22405/2226-8383-2018-21-3-232-240
(Mi cheb938)
 

This article is cited in 1 scientific paper (total in 1 paper)

BRIEF MESSAGE

Asymptotic estimation for trigonometric sums of algebraic grids

E. M. Rarovaa, N. N. Dobrovol'skiiab, I. Yu. Rebrovaa

a Tula State Lev Tolstoy Pedagogical University (Tula)
b Tula State University (Tula)
Full-text PDF (752 kB) Citations (1)
References:
Abstract: The paper continues the author's research on the evaluation of trigonometric sums of an algebraic net with weights with the arbitrary weight function of the $r+1$ order.
For the parameter $\vec{m}$ of the trigonometric sum $S_{M(t),\vec\rho} (\vec m)$, three cases are highlighted.
If $\vec{m}$ belongs to the algebraic lattice $\Lambda (t \cdot T(\vec a))$, then the asymptotic formula is valid
$$ S_{M(t),\vec\rho}(t(m,\ldots, m))=1+O\left(\frac{\ln^{s-1}\det \Lambda(t)} { (\det\Lambda(t))^{r+1}}\right). $$

If $\vec{m}$ does not belong to the algebraic lattice $\Lambda(t\cdot T(\vec a))$, then two vectors are defined $\vec{n}_\Lambda(\vec{m})=(n_1,\ldots,n_s)$ and $\vec{k}_\Lambda(\vec{m})$ from the conditions $\vec{k}_\Lambda(\vec{m})\in\Lambda$, $\vec{m}=\vec{n}_\Lambda(\vec{M})+\vec{K}_\lambda(\vec{m})$ and the product $q(\vec{n}_\lambda(\vec{m}))=\overline{n_1}\cdot\ldots\cdot\overline{n_s}$ is minimal. Asymptotic estimation is proved
$$ |S_{M(t),\vec\rho}(\vec{m})|\le B_r\left(\frac{1-\delta(\vec{k}_\Lambda(\vec{m}))}{(q(\vec{n}_\Lambda(\vec{m})))^{r+1}}+O\left(\frac{q(\vec{n}_\Lambda(\vec{m}))^{r+1}\ln^{s-1}\det \Lambda(t)}{ (\det\Lambda(t))^{r+1}}\right)\right). $$
Keywords: algebraic lattices, algebraic net, trigonometric sums of algebraic net with weights, weight functions.
Funding agency Grant number
Russian Foundation for Basic Research 19-41-710004_р_а
The work has been prepared by the RFBR grant №19-41-710004_р_а.
Received: 28.05.2020
Accepted: 22.10.2020
Document Type: Article
UDC: 511.3
Language: Russian
Citation: E. M. Rarova, N. N. Dobrovol'skii, I. Yu. Rebrova, “Asymptotic estimation for trigonometric sums of algebraic grids”, Chebyshevskii Sb., 21:3 (2020), 232–240
Citation in format AMSBIB
\Bibitem{RarDobReb20}
\by E.~M.~Rarova, N.~N.~Dobrovol'skii, I.~Yu.~Rebrova
\paper Asymptotic estimation for trigonometric sums of algebraic grids
\jour Chebyshevskii Sb.
\yr 2020
\vol 21
\issue 3
\pages 232--240
\mathnet{http://mi.mathnet.ru/cheb938}
\crossref{https://doi.org/10.22405/2226-8383-2018-21-3-232-240}
Linking options:
  • https://www.mathnet.ru/eng/cheb938
  • https://www.mathnet.ru/eng/cheb/v21/i3/p232
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:100
    Full-text PDF :29
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024