Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2020, Volume 21, Issue 3, Pages 196–214
DOI: https://doi.org/10.22405/2226-8383-2018-21-3-196-214
(Mi cheb935)
 

On the mean value of functions related to the divisors function in the ring of polynomials over a finite field

V. V. Iudelevich

Lomonosov Moscow State University (Moscow)
References:
Abstract: Let $ g: \mathbb{F}_q[T] \rightarrow \mathbb{R} $ be a multiplicative function which values at the degrees of the irreducible polynomial, depends only on the exponent, such that $g(P^k)=d_k$ polynomial $P$ and for some arbitrary sequence of reals $\{d_k\}_{k=1}^{\infty}$. This paper regards the sum
$$ T (N) = \sum\limits_{\substack{\deg F=N \\ F \text{ is monic}}}{g (F)}, $$
where $ F $ ranges over polynomials of degree $ N $ with leading coefficient equal to 1 (unitary polynomials). For the sum $ T (N) $, an exact formula is found, and various asymptotics are calculated in cases of $ q \to \infty; \ q \to \infty, \ N \to \infty; \ q ^ N \to \infty $. In particular, the following asymptotic formulas are obtained
$$\sum\limits_{\substack{\deg F=N \\ F \text{ is monic}}}\tau(F^k)=\binom{k+N}{N}q^N+O_{N,k}\left(q^{N-1}\right),\ \ N\ge 1,\ q\to\infty; $$

$$ \sum\limits_{\substack{\deg F=N \\ F \text{ is monic}}}\dfrac{1}{\tau(F)}=\dfrac{q^N}{4^N}\left(\binom{2N}{N}-\dfrac{2}{3}\binom{2N-4}{N-2}q^{-1}+O\left(\ \dfrac{4^N}{\sqrt{N}}q^{-2}\right)\right),\ N\to\infty,\ q\to\infty; $$

$$\sum\limits_{\substack{\deg F=N \\ F \text{ is monic}}}\dfrac{1}{\tau(F)}=C_1\cdot\dfrac{\binom{2N}{N}}{4^N}q^N+O\left(\dfrac{q^{N-0.5}}{N^{1.5}}\right),\ \ C_1=\prod_{l=1}^{+\infty}\left(\sqrt{q^{2l}-q^{l}}\ln\dfrac{q^l}{q^l-1}\right)^{\pi_q(l)},\ q^N\to\infty;$$
where $\tau(F)$ is a number of monic divisors of $F$, and $\pi_q(l)$ is a number of monic irreducible polynomials of degree $l$. The second and third equalities are analogous for polynomials over a finite field of one of Ramanujan's results
$$\sum_{n\leq x}{\dfrac{1}{d(n)}}=\dfrac{x}{\sqrt{\ln x}}\left(a_0+\dfrac{a_1}{\ln{x}}+\ldots+\dfrac{a_N}{(\ln{x})^N}+O_N\left(\dfrac{1}{(\ln{x})^{N+1}}\right)\right),$$
where $d(n)$ is a classical divisor function, and $a_i$ are some constants. In particular,
$$a_0=\dfrac{1}{\sqrt{\pi}}\prod\limits_{p}\ln\dfrac{p}{p-1}\sqrt{p(p-1)}.$$
Keywords: the ring of polynomials over a finite field, divisor function.
Received: 03.02.2020
Accepted: 22.10.2020
Document Type: Article
UDC: 511.321
Language: Russian
Citation: V. V. Iudelevich, “On the mean value of functions related to the divisors function in the ring of polynomials over a finite field”, Chebyshevskii Sb., 21:3 (2020), 196–214
Citation in format AMSBIB
\Bibitem{Iud20}
\by V.~V.~Iudelevich
\paper On the mean value of functions related to the divisors function in the ring of polynomials over a finite field
\jour Chebyshevskii Sb.
\yr 2020
\vol 21
\issue 3
\pages 196--214
\mathnet{http://mi.mathnet.ru/cheb935}
\crossref{https://doi.org/10.22405/2226-8383-2018-21-3-196-214}
Linking options:
  • https://www.mathnet.ru/eng/cheb935
  • https://www.mathnet.ru/eng/cheb/v21/i3/p196
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:196
    Full-text PDF :62
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024