Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2020, Volume 21, Issue 3, Pages 165–185
DOI: https://doi.org/10.22405/2226-8383-2018-21-3-165-185
(Mi cheb933)
 

This article is cited in 1 scientific paper (total in 1 paper)

Smooth manifold of one-dimensional lattices

E. N. Smirnovaa, O. A. Pikhtil'kovab, N. N. Dobrovol'skiicd, I. Yu. Rebrovad, N. M. Dobrovol'skiid

a Orenburg State University (Orenburg)
b MIREA Russian Technological University (Moscow)
c Tula State University (Tula)
d Tula State Lev Tolstoy Pedagogical University (Tula)
Full-text PDF (810 kB) Citations (1)
References:
Abstract: In this paper, the foundations of the theory of smooth varieties of number-theoretic lattices are laid.
The simplest case of one-dimensional lattices is considered. In subsequent articles, we will first consider the case of one-dimensional shifted lattices, then the General case of multidimensional lattices, and finally the case of multidimensional shifted lattices.
In this paper, we define a homeomorphic mapping of the space of one-dimensional lattices to the set of all real numbers $\mathbb{R}$. Thus, it is established that the space of one-dimensional lattices $PR_1$ is locally Euclidean space of dimension $1$.
Since the metric on these spaces is not Euclidean, but is "logarithmic", unexpected results are obtained in the one-dimensional case about derivatives of the main functions, such as the lattice determinant, the hyperbolic lattice parameter, the norm minimum, the lattice Zeta function, and the hyperbolic lattice Zeta function.
The paper considers the relationship of these functions with the issues of studying the error of approximate integration over parallelepipedal grids.
Keywords: lattices, metric space of lattices, smooth variety of lattices.
Funding agency Grant number
Russian Foundation for Basic Research 19-41-710004_р_а
Received: 21.04.2020
Accepted: 22.10.2020
Document Type: Article
UDC: 511.42
Language: Russian
Citation: E. N. Smirnova, O. A. Pikhtil'kova, N. N. Dobrovol'skii, I. Yu. Rebrova, N. M. Dobrovol'skii, “Smooth manifold of one-dimensional lattices”, Chebyshevskii Sb., 21:3 (2020), 165–185
Citation in format AMSBIB
\Bibitem{SmiPikDob20}
\by E.~N.~Smirnova, O.~A.~Pikhtil'kova, N.~N.~Dobrovol'skii, I.~Yu.~Rebrova, N.~M.~Dobrovol'skii
\paper Smooth manifold of one-dimensional lattices
\jour Chebyshevskii Sb.
\yr 2020
\vol 21
\issue 3
\pages 165--185
\mathnet{http://mi.mathnet.ru/cheb933}
\crossref{https://doi.org/10.22405/2226-8383-2018-21-3-165-185}
Linking options:
  • https://www.mathnet.ru/eng/cheb933
  • https://www.mathnet.ru/eng/cheb/v21/i3/p165
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:110
    Full-text PDF :28
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024