Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2020, Volume 21, Issue 2, Pages 403–416
DOI: https://doi.org/10.22405/2226-8383-2018-21-2-403-416
(Mi cheb916)
 

This article is cited in 1 scientific paper (total in 1 paper)

The mean-value theorem for trigonometric sums on the sequence of binomial type polynomials

V. N. Chubarikov

Mechanics and mathematics faculty of the M. V. Lomonosov Moscow State University
Full-text PDF (648 kB) Citations (1)
References:
Abstract: The mean-value theorem for trigonometric sums on the sequence of binomial type polynomials was proved. As known, the classical I. M. Vinogradov mean-value theorem belong to the sequence of polynomials of the form $\{x^n, n\geq 0\}.$ Estimates of sums of the kind
$$ \sum_{m\leq P}e^{2\pi if(m)}, f(m)=\sum_{k=0}^n\alpha_kp_k(m), $$
are the important application of the finding mean-value theorem. Here $p_k(x)$ is the sequence integer-valued polynomials of the binomial type, but a set of numbers $(\alpha_1\alpha_1,\dots,\alpha_n)$ represents a point of the $n$-fold unit cube $\Omega: 0\leq \alpha_1,\dots,\alpha_n<1.$
Keywords: the mean-value I. M. Vinogradov theorem, the sequence of polynomials of the binomial type, polynomials of Abel, Laguerre, lowers and upper factorials, exponential polynomials.
Received: 11.01.2019
Accepted: 11.03.2020
Document Type: Article
UDC: 511.3
Language: Russian
Citation: V. N. Chubarikov, “The mean-value theorem for trigonometric sums on the sequence of binomial type polynomials”, Chebyshevskii Sb., 21:2 (2020), 403–416
Citation in format AMSBIB
\Bibitem{Chu20}
\by V.~N.~Chubarikov
\paper The mean-value theorem for trigonometric sums on the sequence of binomial type polynomials
\jour Chebyshevskii Sb.
\yr 2020
\vol 21
\issue 2
\pages 403--416
\mathnet{http://mi.mathnet.ru/cheb916}
\crossref{https://doi.org/10.22405/2226-8383-2018-21-2-403-416}
Linking options:
  • https://www.mathnet.ru/eng/cheb916
  • https://www.mathnet.ru/eng/cheb/v21/i2/p403
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:165
    Full-text PDF :58
    References:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024