Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2020, Volume 21, Issue 2, Pages 383–402
DOI: https://doi.org/10.22405/2226-8383-2018-21-2-383-402
(Mi cheb915)
 

On the Mishchenko–Fomenko hypothesis for a generalized oscillator and Kepler system

A. V. Tsiganov

Steklov Mathematical Institute of Russian Academy of Sciences (Moscow)
References:
Abstract: Deformations of the Kepler problem and the harmonic oscillator are considered for which additional integrals of motion are the coordinates of the reduced divisor, according to the Riemann–Roch theorem. For this family of non-commutative integrable systems the validity of the Mishchenko–Fomenko hypothesis about the existence of integrals of motion from a single functional class, in this case polynomial integrals of motion, is discussed.
Keywords: superintegrable systems, noncommutative integrable systems, Mishchenko–Fomenko conjecture.
Funding agency Grant number
Russian Foundation for Basic Research 19-71-30012
Received: 25.11.2019
Accepted: 11.03.2020
Bibliographic databases:
Document Type: Article
UDC: 514.85; 531.011
Language: Russian
Citation: A. V. Tsiganov, “On the Mishchenko–Fomenko hypothesis for a generalized oscillator and Kepler system”, Chebyshevskii Sb., 21:2 (2020), 383–402
Citation in format AMSBIB
\Bibitem{Tsi20}
\by A.~V.~Tsiganov
\paper On the Mishchenko--Fomenko hypothesis for a generalized oscillator and Kepler system
\jour Chebyshevskii Sb.
\yr 2020
\vol 21
\issue 2
\pages 383--402
\mathnet{http://mi.mathnet.ru/cheb915}
\crossref{https://doi.org/10.22405/2226-8383-2018-21-2-383-402}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4188514}
Linking options:
  • https://www.mathnet.ru/eng/cheb915
  • https://www.mathnet.ru/eng/cheb/v21/i2/p383
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:129
    Full-text PDF :53
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024