Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2020, Volume 21, Issue 2, Pages 207–227
DOI: https://doi.org/10.22405/2226-8383-2018-21-2-207-227
(Mi cheb905)
 

This article is cited in 1 scientific paper (total in 1 paper)

Generalized chessboard complexes and discrete Morse theory

D. Jojića, G. Paninabc, S. T. Vrećicad, R. T. Živaljevićed

a University of Banja Luka (Banja Luka, Bosnia and Herzegovina)
b St. Petersburg State University (St. Petersburg)
c St. Petersburg Department of Steklov Mathematical Institute (St. Petersburg)
d Faculty of Mathematics, University of Belgrade (Belgrade, Serbia)
e Mathematical Institute, SASA (Belgrade, Serbia)
Full-text PDF (767 kB) Citations (1)
References:
Abstract: Chessboard complexes and their generalizations, as objects, and Discrete Morse theory, as a tool, are presented as a unifying theme linking different areas of geometry, topology, algebra and combinatorics. Edmonds and Fulkerson bottleneck (minmax) theorem is proved and interpreted as a result about a critical point of a discrete Morse function on the Bier sphere $Bier(K)$ of an associated simplicial complex $K$. We illustrate the use of “standard discrete Morse functions” on generalized chessboard complexes by proving a connectivity result for chessboard complexes with multiplicities. Applications include new Tverberg-Van Kampen-Flores type results for $j$-wise disjoint partitions of a simplex.
Keywords: chessboard complexes, discrete Morse theorey, bottleneck theorem, Tverberg-Van Kampen-Flores theorems.
Received: 18.01.2019
Accepted: 11.03.2020
Document Type: Article
UDC: 515.164
Language: English
Citation: D. Jojić, G. Panina, S. T. Vrećica, R. T. Živaljević, “Generalized chessboard complexes and discrete Morse theory”, Chebyshevskii Sb., 21:2 (2020), 207–227
Citation in format AMSBIB
\Bibitem{JojPanVre20}
\by D.~Joji\'c, G.~Panina, S.~T.~Vre\'cica, R.~T.~{\v Z}ivaljevi{\'c}
\paper Generalized chessboard complexes and discrete Morse theory
\jour Chebyshevskii Sb.
\yr 2020
\vol 21
\issue 2
\pages 207--227
\mathnet{http://mi.mathnet.ru/cheb905}
\crossref{https://doi.org/10.22405/2226-8383-2018-21-2-207-227}
Linking options:
  • https://www.mathnet.ru/eng/cheb905
  • https://www.mathnet.ru/eng/cheb/v21/i2/p207
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:148
    Full-text PDF :70
    References:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024