Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2020, Volume 21, Issue 2, Pages 144–158
DOI: https://doi.org/10.22405/2226-8383-2018-21-2-144-158
(Mi cheb901)
 

Optimal feedback control for one motion model of a nonlinearly viscous fluid

V. G. Zvyagina, A. V. Zvyaginb, N. M. Hongc

a Voronezh State University (Voronezh)
b Voronezh State Pedagogical University (Voronezh)
c Research Institute of Mathematics, Voronezh State University (Voronezh)
References:
Abstract: An optimal control problem with a feedback is considered for an initial boundary problem describing a motion of non-linearly viscous liquid. An existence of an optimal solution minimising a given quality functional is proved. A topological approximation approach to study of mathematical problems of hydrodynamics is used in the proof of existence of an optimal solution.
Keywords: optimal control with feedback, existence theorem, nonlinearly viscous fluid.
Funding agency Grant number
Russian Science Foundation 19-11-00146
Russian Foundation for Basic Research 20-01-00051
19-31-60014
Received: 01.03.2020
Accepted: 11.03.2020
Document Type: Article
UDC: 517.977.57; 517.958
Language: Russian
Citation: V. G. Zvyagin, A. V. Zvyagin, N. M. Hong, “Optimal feedback control for one motion model of a nonlinearly viscous fluid”, Chebyshevskii Sb., 21:2 (2020), 144–158
Citation in format AMSBIB
\Bibitem{ZvyZvyHon20}
\by V.~G.~Zvyagin, A.~V.~Zvyagin, N.~M.~Hong
\paper Optimal feedback control for one motion model of a nonlinearly viscous fluid
\jour Chebyshevskii Sb.
\yr 2020
\vol 21
\issue 2
\pages 144--158
\mathnet{http://mi.mathnet.ru/cheb901}
\crossref{https://doi.org/10.22405/2226-8383-2018-21-2-144-158}
Linking options:
  • https://www.mathnet.ru/eng/cheb901
  • https://www.mathnet.ru/eng/cheb/v21/i2/p144
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:196
    Full-text PDF :89
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024