Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2020, Volume 21, Issue 1, Pages 364–367
DOI: https://doi.org/10.22405/2226-8383-2018-21-1-364-367
(Mi cheb879)
 

This article is cited in 2 scientific papers (total in 2 papers)

BRIEF MESSAGE

On the values of Beatty sequence in an arithmetic progression

A. V. Begunts, D. V. Goryashin

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (550 kB) Citations (2)
References:
Abstract: In the paper, we consider $N_d(x)=N(x;\alpha,\beta;d,a)$, $x\in\mathbb{N}$, which is the number of values of Beatty sequence $[\alpha n+\beta]$, $1\leqslant n\leqslant x$, for $\alpha>1$ irrational and with bounded partial quotients, $\beta\in[0;\alpha)$, in an arithmetic progression $(a+kd)$, $k\in\mathbb{N}$. We prove the asymptotic formula $N_d(x) = \frac{x}{d} + O(d\ln^3 x)$ as $x\to\infty,$ where the implied constant is absolute. For growing difference $d$ the result is non-trivial provided $d\ll \sqrt{x}\ln^{-3/2-\varepsilon}x$, $\varepsilon>0$.
Keywords: Beatty sequence, arithmetic progression, asymptotic formula.
Funding agency Grant number
Lomonosov Moscow State University
Document Type: Article
UDC: 511.35, 517.15
Language: Russian
Citation: A. V. Begunts, D. V. Goryashin, “On the values of Beatty sequence in an arithmetic progression”, Chebyshevskii Sb., 21:1 (2020), 364–367
Citation in format AMSBIB
\Bibitem{BegGor20}
\by A.~V.~Begunts, D.~V.~Goryashin
\paper On the values of Beatty sequence in an arithmetic progression
\jour Chebyshevskii Sb.
\yr 2020
\vol 21
\issue 1
\pages 364--367
\mathnet{http://mi.mathnet.ru/cheb879}
\crossref{https://doi.org/10.22405/2226-8383-2018-21-1-364-367}
Linking options:
  • https://www.mathnet.ru/eng/cheb879
  • https://www.mathnet.ru/eng/cheb/v21/i1/p364
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025