Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2020, Volume 21, Issue 1, Pages 341–356
DOI: https://doi.org/10.22405/2226-8383-2018-21-1-341-356
(Mi cheb877)
 

This article is cited in 2 scientific papers (total in 2 papers)

On a mean-value theorem for multiple trigonometric sums

V. N. Chubarikov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (577 kB) Citations (2)
References:
Abstract: A mean-value theorem for multiple trigonometric generalizing from the G. I. Arkhipov's theorem [12, 13] was proved. The first theorem of the similar type lies in the core of the I. M. Vinogradov's method [2]. In the paper the version of theorem with “similar” lengths of changing intervals of variables. Estimates of zeta-sums of the form
$$ \sum_{n\leq P}n^{it}. $$
are the interesting application of the I.M.Vinogradov's method. The similar application of the mean-value theorem proving by us serve the estimate of sums of the form
$$ \sum_{n\leq P_1}\dots\sum_{n\leq P_r}(n_1\dots n_r+k)^{it}, \sum_{n\leq P}\tau_s(n)(n+k)^{it}, \sum_{p\leq P}(p+k)^{it}. $$
Keywords: the mean-value theorem of I. M. Vinigradov and G. I. Arkhipov, the multivariate divisor function, prime numbers, the zeta-sum.
Document Type: Article
UDC: 511.3
Language: Russian
Citation: V. N. Chubarikov, “On a mean-value theorem for multiple trigonometric sums”, Chebyshevskii Sb., 21:1 (2020), 341–356
Citation in format AMSBIB
\Bibitem{Chu20}
\by V.~N.~Chubarikov
\paper On a mean-value theorem for multiple trigonometric sums
\jour Chebyshevskii Sb.
\yr 2020
\vol 21
\issue 1
\pages 341--356
\mathnet{http://mi.mathnet.ru/cheb877}
\crossref{https://doi.org/10.22405/2226-8383-2018-21-1-341-356}
Linking options:
  • https://www.mathnet.ru/eng/cheb877
  • https://www.mathnet.ru/eng/cheb/v21/i1/p341
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024