Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2020, Volume 21, Issue 1, Pages 247–258
DOI: https://doi.org/10.22405/2226-8383-2018-21-1-247-258
(Mi cheb871)
 

This article is cited in 6 scientific papers (total in 6 papers)

Nikolskii constant for trigonometric polynomials with periodic Gegenbauer weight

I. A. Martyanov

Tula State University
Full-text PDF (727 kB) Citations (6)
References:
Abstract: We study the Nikolskii constant (or the Jackson–Nikolskii constant) for complex trigonometric polynomials in the space $L_{\alpha}^{p}(\mathbb{T})$ for $p\ge 1$ with the periodic Gegenbauer weight $| \sin x|^{2\alpha+1}$:
$$ \mathcal{C}_{p,\alpha}(n)=\sup_{T\in \mathcal{T}_{n}\setminus \{0\}} \frac{\|T\|_{\infty}}{\|T\|_{p}}, $$
where $\|{ \cdot }\|_{p}=\|{ \cdot }\|_{L_{\alpha}^{p}(\mathbb{T})}$. D. Jackson (1933) proved that $\mathcal{C}_{p,-1/2}(n)\le c_{p}n^{1/p}$ for all $n\ge 1$. The problem of finding $\mathcal{C}_{p,-1/2}(n)$ has a long history. However, sharp constants are known only for $p=2$. For $p=1$, the problem has interesting applications, e.g., in number theory. We note the results of Ja. L. Geronimus, L. V. Taikov, D. V. Gorbachev, I. E. Simonov, P. Yu. Glazyrina. For $p>0$, we note the results of I. I. Ibragimov, V. I. Ivanov, E. Levin, D. S. Lubinsky, M. I. Ganzburg, S. Yu. Tikhonov, in the weight case — V. V. Arestov, A. G. Babenko, M. V. Deikalova, Á. Horváth.
It is proved that the supremum here is achieved on a real even trigonometric polynomial with a maximum modulus at zero. As a result, a connection is established with the Nikolskii algebraic constant with weight $(1-x^{2})^{\alpha}$, investigated by V. V. Arestov and M. V. Deikalova (2015). The proof follows their method and is based on the positive generalized translation operator in the space $L^{p}_{\alpha}(\mathbb{T})$ with the periodic Gegenbauer weight. This operator was constructed and studied by D. V. Chertova (2009). As an application, we propose an approach to computing $\mathcal{C}_{p,\alpha}(n)$ based on the Arestov–Deikalova duality relations.
Keywords: trigonometric polynomial, algebraic polynomial, the Nikolskii constant, the Gegenbauer weight.
Funding agency Grant number
Russian Foundation for Basic Research 19-31-90152
The reported study was funded by RFBR, project number 19-31-90152.
Document Type: Article
UDC: 517.5
Language: Russian
Citation: I. A. Martyanov, “Nikolskii constant for trigonometric polynomials with periodic Gegenbauer weight”, Chebyshevskii Sb., 21:1 (2020), 247–258
Citation in format AMSBIB
\Bibitem{Mar20}
\by I.~A.~Martyanov
\paper Nikolskii constant for trigonometric polynomials with periodic Gegenbauer weight
\jour Chebyshevskii Sb.
\yr 2020
\vol 21
\issue 1
\pages 247--258
\mathnet{http://mi.mathnet.ru/cheb871}
\crossref{https://doi.org/10.22405/2226-8383-2018-21-1-247-258}
Linking options:
  • https://www.mathnet.ru/eng/cheb871
  • https://www.mathnet.ru/eng/cheb/v21/i1/p247
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:115
    Full-text PDF :36
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024