Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2020, Volume 21, Issue 1, Pages 62–81
DOI: https://doi.org/10.22405/2226-8383-2018-21-1-62-81
(Mi cheb861)
 

This article is cited in 1 scientific paper (total in 1 paper)

On representation varieties of some one-relator products of cyclic groups

V. V. Beniash-Kryvetsa, A. N. Admiralovab

a Belarusian State University (Minsk)
b Limited Liability Company “SoftClub“ (Minsk)
Full-text PDF (738 kB) Citations (1)
References:
Abstract: In the paper representation varieties of two classes of finitely generated groups are investigated. The first class consists of groups with the presentation
\begin{gather*} G = \langle a_1,\ldots,a_s,b_1,\ldots,b_k,x_1,\ldots,x_g\mid\\ a_1^{m_1}=\ldots=a_s^{m_s}= x_1^2\ldots x_g^2 W(a_1,\ldots,a_s,b_1,\ldots,b_k)=1\rangle, \end{gather*}
where $g\ge 3$, $m_i\ge 2$ for $i=1,\ldots,s$ and $W(a_1,\ldots,a_s,b_1,\ldots,b_k)$ is an element in normal form in the free product of cyclic groups
$$ H=\langle a_1\mid a_1^{m_1}\rangle\ast\ldots\ast\langle a_s\mid a_s^{m_s}\rangle\ast\langle b_1\rangle\ast\ldots\ast \langle b_k\rangle. $$

The second class consists of groups with the presentation
$$ G(p,q) = \langle a_1,\ldots,a_s,b_1,\ldots,b_k,x_1,\ldots,x_g,t\mid a_1^{m_1}=\ldots=a_s^{m_s}=1,\ tU^pt^{-1}=U^q \rangle, $$
where $p$ and $q$ are integer numbers such that $p>|q|\geq1$, $(p,q)=1$, $m_i\ge 2$ for $i=1,\ldots,s$, $g\ge3$, $U=x_1^2\ldots x_g^2W(a_1,\ldots,a_s,b_1,\ldots,b_k)$ and $W(a_1,\ldots,a_s,b_1,\ldots,b_k)$ is an above defined element.
Irreducible components of representation varieties $R_n(G)$ and $R_n(G(p,q))$ are found, their dimensions are calculated and it is proved, that every irreducible component is a rational variety.
Keywords: a group presentation, a representation variety, a dimension of a variety, a rational variety.
Document Type: Article
UDC: 512.547
Language: Russian
Citation: V. V. Beniash-Kryvets, A. N. Admiralova, “On representation varieties of some one-relator products of cyclic groups”, Chebyshevskii Sb., 21:1 (2020), 62–81
Citation in format AMSBIB
\Bibitem{BenAdm20}
\by V.~V.~Beniash-Kryvets, A.~N.~Admiralova
\paper On representation varieties of some one-relator products of cyclic groups
\jour Chebyshevskii Sb.
\yr 2020
\vol 21
\issue 1
\pages 62--81
\mathnet{http://mi.mathnet.ru/cheb861}
\crossref{https://doi.org/10.22405/2226-8383-2018-21-1-62-81}
Linking options:
  • https://www.mathnet.ru/eng/cheb861
  • https://www.mathnet.ru/eng/cheb/v21/i1/p62
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024