|
This article is cited in 1 scientific paper (total in 1 paper)
Short cubic exponential sums with Möbius function
Z. Kh. Rakhmonov, F. Z. Rahmonov Dzhuraev Institute of Mathematics, Academy of Sciences of Republic of Tajikistan, Dushanbe
Abstract:
The work is dedicated to the conclusion of non-trivial estimates of short cubic exponential sums with Möbius function of the form $$ S_3(\alpha;x,y) = \sum_{x-y<n\le x} \mu(n) e(\alpha n^3), $$ over minor arcs $\mathfrak{m}(\mathscr L^{32(B+18)})$ for $y\ge x^\frac{4}{5}\mathscr L^{8B+944}$ and $\tau=y^5x^{-2}\mathscr L^{-32(B+18)}.$
Keywords:
shorts double exponential sum, Möbius function, method for estimating exponential sums with prime numbers, nontrivial estimate, minor arcs.
Received: 15.11.2019 Accepted: 20.12.2019
Citation:
Z. Kh. Rakhmonov, F. Z. Rahmonov, “Short cubic exponential sums with Möbius function”, Chebyshevskii Sb., 20:4 (2019), 281–305
Linking options:
https://www.mathnet.ru/eng/cheb849 https://www.mathnet.ru/eng/cheb/v20/i4/p281
|
|