Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2019, Volume 20, Issue 4, Pages 86–107
DOI: https://doi.org/10.22405/2226-8383-2018-20-4-86-107
(Mi cheb838)
 

On separation of a class of degenerate differential operators in the Lebesgue space

M. G. Gadoeva, S. A. Iskhokovb, F. S. Iskhokovb

a Mirnyi Polytechnic Institute (branch of the North-Eastern Federal University in Mirnyi)
b Dzhuraev Institute of Mathematics, Academy of Sciences of Republic of Tajikistan, Dushanbe
References:
Abstract: Let $\Omega$ be an arbitrary open set in $n$-dimensional Euclidian space $R_{n}$ and let $\Pi(0)$ be the unit cube centered at the origin. For each point $\xi=(\xi_{1},\xi_{2},\ldots,\xi_{n})\in R_{n}$ and each vector $\vec{t}=(t_{1},t_{2},\ldots,t_{n})$ with positive components we define a parallelepiped $\Pi_{\overrightarrow{t}}(\xi)$ by the identity
$$ \Pi_{\overrightarrow{t}}(\xi)=\left\{x\in R_{n} :\left(\left(x_{1}-\xi_{1}\right)/t_{1}, \left(x_{2}-\xi_{2}\right)/t_{2},\ldots, \left(x_{n}-\xi_{n}\right)/t_{n}\right)\in \Pi(0)\right\}. $$
Let $g_{j}(x) (j=\overline{1,n})$ be positive functions defined in $\Omega$. We let $\Pi_{\varepsilon,\overrightarrow{g}}(\xi)=\Pi_{\varepsilon\overrightarrow{g}(\xi)}(\xi)$, where $\varepsilon>0$ and $\overrightarrow{g}(\xi)=(g_{1}(\xi),g_{2}(\xi),\ldots,g_{n}(\xi))$.
It is assumed that the set $\Omega$ and functions $g_{j}(x), j=\overline{1,n},$ are related by condition: (A) There exists a number $\varepsilon_{0}>0$ such that for each $\xi\in\Omega$ and any $\varepsilon\in (0, \varepsilon_{0})$ the parallelepiped $\Pi_{\varepsilon,\overrightarrow{g}}(\xi)$ is contained in $\Omega$. The condition (A) is an analogue of the immersion condition introduced by P.I. Lizorkin in 1980.
In the paper we investigate separation of a differential expression
\begin{equation}\label{*} L(x,D_{x})=\sum_{|k|\leq 2r}a_{k}(x)D_{x}^{k} (x\in \Omega), \end{equation}
where $r$ – a natural number, $k=(k_{1}, k_{2}, \ldots , k_{n})$ is a multi-index, $|k|=k_{1}+k_{2}+\ldots+k_{n}$ is length of the multi-index, in the Lebesgue space $L_{p}(\Omega), 1<p<+\infty$. We denote by $\mathcal{K}$ the set of all multi-indexes $k$ such that $a_k(x)\not\equiv 0$. Let $O_\mathcal{K}$ be the set of all functions $u(x)\in L_{1, loc}(\Omega)$, that have Sobolev generalized derivatives $D_x^ku(x)$ for all $k\in\mathcal{K}$. The differential expression (*) is said to be $L_p$-separated if for all $u(x)\in O_\mathcal{K}$ such that $u(x)\in L_{p}(\Omega)$, $L(x, D_x)u(x)\in L_{p}(\Omega)$ the inclusion $a_k(x)D^k_x u(x)\in L_{p}(\Omega)$ holds for all multi-indexes $k\in \mathcal{K}$.
The work consists of five sections. The first section contains the statement of the main results, the right regularizer for the studied class of differential expressions is constructed in the second section, and sections 3-5 provide proofs of the main theorems of the paper.
Keywords: separation, partial differential operator, non-power degeneration, right-hand regularizing operator, inverse operator.
Received: 14.10.2019
Accepted: 20.12.2019
Document Type: Article
UDC: 517
Language: Russian
Citation: M. G. Gadoev, S. A. Iskhokov, F. S. Iskhokov, “On separation of a class of degenerate differential operators in the Lebesgue space”, Chebyshevskii Sb., 20:4 (2019), 86–107
Citation in format AMSBIB
\Bibitem{GadIskIsk19}
\by M.~G.~Gadoev, S.~A.~Iskhokov, F.~S.~Iskhokov
\paper On separation of a class of degenerate differential operators in the Lebesgue space
\jour Chebyshevskii Sb.
\yr 2019
\vol 20
\issue 4
\pages 86--107
\mathnet{http://mi.mathnet.ru/cheb838}
\crossref{https://doi.org/10.22405/2226-8383-2018-20-4-86-107}
Linking options:
  • https://www.mathnet.ru/eng/cheb838
  • https://www.mathnet.ru/eng/cheb/v20/i4/p86
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024