Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2019, Volume 20, Issue 4, Pages 32–45
DOI: https://doi.org/10.22405/2226-8383-2018-20-4-32-45
(Mi cheb834)
 

This article is cited in 1 scientific paper (total in 1 paper)

About one additive problem Hua Loo Keng's

I. Allakov, A. Sh. Safarov

Termez state University (Termez, Uzbekistan)
Full-text PDF (659 kB) Citations (1)
References:
Abstract: Let $X$ be enough big real number and $ k\geq2$ be a natural number, $M$ be a set of natural numbers $n$ not exceeding $X$, which cannot be written as a sum of prime and fixed degree a prime, $E_k (X)=\mathrm{card} M.$ In present paper is proved theorem.
Theorem. For it is enough greater $X-$equitable estimation $ E_k (X)\ll X^{\gamma},$ where
$$ \gamma<\left\{
\begin{array}{lll} 1-(17612,983k^2 (\ln k+6,5452))^{-1}, & \text{при} & 2\leq k\leq 205,\\[1mm] 1-(68k^3 (2\ln k+\ln\ln k+2,8))^{-1}, & \text{при} & k>205,\\[1mm] 1-(137k^3 \ln k)^{-1}, & \text{при} & k>e^{628}. \end{array}
\right. $$

In particular from this theorems follows that estimation $\gamma<1-(137k^3 \ln k)^{-1},$ got by V. A. Plaksin for it is enough greater $k$, remains to be equitable under $\ln k>628$.
Keywords: The Dirichlet charakter, Dirichlet $L$-function, exceptional set, representation numbers, exceptional zero, exceptional nature, main member, remaining member.
Received: 08.10.2019
Accepted: 20.12.2019
Document Type: Article
UDC: 511.2
Language: Russian
Citation: I. Allakov, A. Sh. Safarov, “About one additive problem Hua Loo Keng's”, Chebyshevskii Sb., 20:4 (2019), 32–45
Citation in format AMSBIB
\Bibitem{AllSaf19}
\by I.~Allakov, A.~Sh.~Safarov
\paper About one additive problem Hua Loo Keng's
\jour Chebyshevskii Sb.
\yr 2019
\vol 20
\issue 4
\pages 32--45
\mathnet{http://mi.mathnet.ru/cheb834}
\crossref{https://doi.org/10.22405/2226-8383-2018-20-4-32-45}
Linking options:
  • https://www.mathnet.ru/eng/cheb834
  • https://www.mathnet.ru/eng/cheb/v20/i4/p32
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:91
    Full-text PDF :49
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024