Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2019, Volume 20, Issue 3, Pages 401–404
DOI: https://doi.org/10.22405/2226-8383-2018-20-3-401-404
(Mi cheb821)
 

BRIEF MESSAGE

On a property of nilpotent matrices over an algebraically closed field

P. V. Danchev

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences (Sofia, Bulgaria)
References:
Abstract: Suppose $F$ is an algebraically closed field. We prove that the ring $\prod_{n=1}^\infty \mathbb M_n(F)$ has a special property which is, somewhat, in sharp parallel with (and slightly better than) a property established by Šter (LAA, 2018) for the rings $\prod_{n=1}^\infty \mathbb M_n(\mathbb Z_2)$ and $\prod_{n=1}^\infty \mathbb M_n(\mathbb Z_4)$, where $\mathbb Z_2$ is the finite simple field of two elements and $\mathbb Z_4$ is the finite indecomposable ring of four elements.
Keywords: nilpotent matrices, idempotent matrices, Jordan canonical form, algebraically closed fields.
Received: 30.09.2019
Accepted: 12.11.2019
Document Type: Article
Language: English
Citation: P. V. Danchev, “On a property of nilpotent matrices over an algebraically closed field”, Chebyshevskii Sb., 20:3 (2019), 401–404
Citation in format AMSBIB
\Bibitem{Dan19}
\by P.~V.~Danchev
\paper On a property of nilpotent matrices over an algebraically closed field
\jour Chebyshevskii Sb.
\yr 2019
\vol 20
\issue 3
\pages 401--404
\mathnet{http://mi.mathnet.ru/cheb821}
\crossref{https://doi.org/10.22405/2226-8383-2018-20-3-401-404}
Linking options:
  • https://www.mathnet.ru/eng/cheb821
  • https://www.mathnet.ru/eng/cheb/v20/i3/p401
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:135
    Full-text PDF :35
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024