Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2019, Volume 20, Issue 3, Pages 390–393
DOI: https://doi.org/10.22405/2226-8383-2018-20-3-390-393
(Mi cheb819)
 

BRIEF MESSAGE

The Jacobian Conjecture for the free associative algebra (of arbitrary characteristic)

A. Belov-Kanelab, L. Rowenc, Jie-Tai Yude

a College of Mathematics and Statistics, Shenzhen University, Shenzhen, 518061, China
b Bar-Ilan University (Ramat Gan, Israel)
c Department of Mathematics, Bar-Ilan University (Israel)
d MIPT
e Department of Mathematics, Sengeng University (China)
References:
Abstract: The object of this note is to use PI-theory to simplify the results of Dicks and Lewin [4] on the automorphisms of the free algebra $F\{ X\}$, namely that if the Jacobian is invertible, then every endomorphism is an epimorphism. We then show how the same proof applies to a somewhat wider class of rings.
Keywords: Automorphisms, polynomial algebras, free associative algebras.
Received: 16.10.2019
Accepted: 12.11.2019
Document Type: Article
UDC: 512
Language: English
Citation: A. Belov-Kanel, L. Rowen, Jie-Tai Yu, “The Jacobian Conjecture for the free associative algebra (of arbitrary characteristic)”, Chebyshevskii Sb., 20:3 (2019), 390–393
Citation in format AMSBIB
\Bibitem{KanRowYu19}
\by A.~Belov-Kanel, L.~Rowen, Jie-Tai~Yu
\paper The Jacobian Conjecture for the free associative algebra (of~arbitrary characteristic)
\jour Chebyshevskii Sb.
\yr 2019
\vol 20
\issue 3
\pages 390--393
\mathnet{http://mi.mathnet.ru/cheb819}
\crossref{https://doi.org/10.22405/2226-8383-2018-20-3-390-393}
Linking options:
  • https://www.mathnet.ru/eng/cheb819
  • https://www.mathnet.ru/eng/cheb/v20/i3/p390
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:220
    Full-text PDF :58
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024