|
This article is cited in 5 scientific papers (total in 5 papers)
Interrelation between Nikolskii–Bernstein constants for trigonometric polynomials and entire functions of exponential type
D. V. Gorbachev, I. A. Martyanov Tula State University (Tula)
Abstract:
Let $0<p\le \infty$,
$\mathcal{C}(n;p;r)=\sup_{T}\frac{\|T^{(r)}\|_{L^{\infty}[0,2\pi)}}{\|T\|_{L^{p}[0,2\pi)}}$
and
$\mathcal{L}(p;r)=\sup_{F}\frac{\|F^{(r)}\|_{L^{\infty}(\mathbb{R})}}{\|F\|_{L^{p}(\mathbb{R})}}$
be the sharp Nikolskii–Bernstein constants for $r$-th derivatives of
trigonometric polynomials of degree $n$ and entire functions of exponential
type $1$ respectively. Recently E. Levin and D. Lubinsky have proved that for
the Nikolskii constants
$$
\mathcal{C}(n;p;0)=n^{1/p}\mathcal{L}(p;0)(1+o(1)),\quad n\to \infty.
$$
M. Ganzburg and S. Tikhonov generalized this result to the case of
Nikolskii–Bernstein constants:
$$
\mathcal{C}(n;p;r)=n^{r+1/p}\mathcal{L}(p;r)(1+o(1)),\quad n\to \infty.
$$
They also showed the existence of the extremal polynomial $\tilde{T}_{n,r}$ and
the function $\tilde{F}_{r}$ in this problem, respectively. Earlier, we gave
more precise boundaries in the Levin–Lubinsky-type result, proving that for
all $p$ and $n$
$$
n^{1/p}\mathcal{L}(p;0)\le \mathcal{C}(n;p;0)\le (n+\lceil
1/p\rceil)^{1/p}\mathcal{L}(p;0).
$$
Here we establish close facts for the case of Nikolskii–Bernstein constants,
which also imply the asymptotic Ganzburg–Tikhonov equality. The results are
stated in terms of extremal functions $\tilde{T}_{n,r}$, $\tilde{F}_{r}$ and
the Taylor coefficients of a kernel of type Jackson–Fejer $(\frac{\sin \pi
x}{\pi x})^{2s}$. We implicitly use Levitan-type polynomials arising from the
Poisson summation formula. We formulate one hypothesis about the signs of the
Taylor coefficients of the extremal functions.
Keywords:
trigonometric polynomial, entire function of exponential type, Nikolskii–Bernstein constant, Jackson–Fejer kernel, Levitan polynomials.
Received: 24.09.2019 Accepted: 12.11.2019
Citation:
D. V. Gorbachev, I. A. Martyanov, “Interrelation between Nikolskii–Bernstein constants for trigonometric polynomials and entire functions of exponential type”, Chebyshevskii Sb., 20:3 (2019), 143–153
Linking options:
https://www.mathnet.ru/eng/cheb804 https://www.mathnet.ru/eng/cheb/v20/i3/p143
|
Statistics & downloads: |
Abstract page: | 246 | Full-text PDF : | 67 | References: | 32 |
|