|
Badly approximable vectors in affine subspaces: Jarník-type result
Nikolay Moshchevitin M. V. Lomonosov Moscow State University
Abstract:
Consider irrational affine subspace $ A\subset \mathbb{R}^d$ of dimension $a$.
We prove that the set
$$
\{\xi =(\xi_1,...,\xi_d) \in { A}:\quad
q^{1/a}\cdot
\max_{1\le i \le d} ||q\xi_i|| \to \infty,\quad
q\to \infty\}
$$
is an $\alpha$-winning set for every $\alpha \in (0,1/2]$.
Received: 28.10.2011
Citation:
Nikolay Moshchevitin, “Badly approximable vectors in affine subspaces: Jarník-type result”, Chebyshevskii Sb., 12:2 (2011), 77–84
Linking options:
https://www.mathnet.ru/eng/cheb79 https://www.mathnet.ru/eng/cheb/v12/i2/p77
|
Statistics & downloads: |
Abstract page: | 241 | Full-text PDF : | 104 | References: | 42 | First page: | 1 |
|