Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2019, Volume 20, Issue 2, Pages 348–365
DOI: https://doi.org/10.22405/2226-8383-2018-20-2-348-365
(Mi cheb775)
 

This article is cited in 2 scientific papers (total in 2 papers)

About Kolmogorov type of inequalities for periodic functions of two variables in $L_2$

M. Sh. Shabozova, M. O. Akobirshoevb

a Tajik national University (Dushanbe)
b Technological University of Tajikistan (Dushanbe)
Full-text PDF (692 kB) Citations (2)
References:
Abstract: Let $L_{2}:=L_{2}(Q), \, Q:=\{0 \leq x, y \leq 2\pi\}$ be the Hilbert space of summable with square of functions$f(x,y)$ in $Q$ domain with norm
\begin{equation*} \|f\|_{2}:=\|f\|_{L_{2}(Q)}:=\left\{\frac{1}{4\pi^{2}}\iint_{(Q)}|f(x,y)|^2dxdy\right\}^{1/2} < \infty, \end{equation*}
and $L_{2}^{(r,s)}(Q)$ is class of functions $f\in L_{2}$ whose derivatives $f^{(k,l)}\in C(Q)$, а $f^{(r,l)}, \, f^{(k,s)}$ $(0\leq k\leq r-1$, $0\leq l\leq s-1, \, r,s\geq 2, r,s\in\mathbb{N})$, $f^{(r,s)}$ are sectionally continuous and $f^{(r,s)}\in L_{2}$. In this paper was proved that for arbitrary function $f\in L_{2}^{(r,s)}$ is hold the following sharp Kolmogorov type inequality
\begin{equation*} \|f^{(r-k,s-l)}\|_{L_2(Q)}\leq\|f\|^{kl/rs}_{L_2(Q)}\cdot\|f^{(r,0)}\|^{(1-\frac{k}{r})\frac{l}{s}}_{L_2(Q)}\cdot \|f^{(0,s)}\|^{\frac{k}{r}(1-\frac{l}{s})}_{L_2(Q)}\cdot\|f^{(r,s)}\|^{(1-\frac{k}{r})(1-\frac{l}{s})}_{L_2(Q)}. \end{equation*}

Also, the Kolmogorov type inequality was found for the best approximation $\mathscr{E}_{m-1,n-1}(f^{(r-k,s-l)})_{2}$ of intermediate derivatives $f^{(r-k,s-l)}$ of functions $f\in L_{2}^{(r,s)}$ by trigonometric “angles” with form
\begin{equation*} \mathscr{E}_{m-1,n-1}(f^{(r-k,s-l)})_{2}\leq \end{equation*}

\begin{equation*}\displaystyle\leq\left(\mathscr{E}_{m-1,n-1}\left(f\right)_{2}\right)^{kl/rs}\cdot\left(\mathscr{E}_{m-1,n-1}\left(f^{(r,0)}\right)_{L_{2}}\right)^{\left(1-\frac{k}{r}\right)\frac{l}{s}}\cdot\end{equation*}

\begin{equation*} \cdot\left(\mathscr{E}_{m-1,n-1}\left(f^{(0,s)}\right)_{2}\right)^{\frac{k}{r}\left(1-\frac{l}{s}\right)}\cdot\left(\mathscr{E}_{m-1,n-1}\left(f^{(r,s)}\right)_{2}\right)^{\left(1-\frac{k}{r}\right)\left(1-\frac{l}{s}\right)}, \end{equation*}
This obtained inequality was applied for the problems of joint approximation and their application in $L_{2}$. The sharp values of linear and Kolmogorov widths for some classes of functions were calculated.
Keywords: Kolmogorov's type of inequalities, generalized polynomial, quasipolynomial, the best approximation, quasiwidth.
Received: 18.04.2019
Accepted: 12.07.2019
Document Type: Article
UDC: 517.5
Language: Russian
Citation: M. Sh. Shabozov, M. O. Akobirshoev, “About Kolmogorov type of inequalities for periodic functions of two variables in $L_2$”, Chebyshevskii Sb., 20:2 (2019), 348–365
Citation in format AMSBIB
\Bibitem{ShaAko19}
\by M.~Sh.~Shabozov, M.~O.~Akobirshoev
\paper About Kolmogorov type of inequalities for periodic functions of two variables in $L_2$
\jour Chebyshevskii Sb.
\yr 2019
\vol 20
\issue 2
\pages 348--365
\mathnet{http://mi.mathnet.ru/cheb775}
\crossref{https://doi.org/10.22405/2226-8383-2018-20-2-348-365}
Linking options:
  • https://www.mathnet.ru/eng/cheb775
  • https://www.mathnet.ru/eng/cheb/v20/i2/p348
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024