Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2019, Volume 20, Issue 2, Pages 156–168
DOI: https://doi.org/10.22405/2226-8383-2018-20-2-156-168
(Mi cheb759)
 

This article is cited in 1 scientific paper (total in 1 paper)

On a generalized Eulerian product defining a meromorphic function on the whole complex plane

N. N. Dobrovol'skiia, M. N. Dobrovol'skiib, N. M. Dobrovol'skiic

a Tula State University (Tula)
b Geophysical centre of RAS (Moscow)
c Tula State L. N. Tolstoy Pedagogical University (Tula)
Full-text PDF (700 kB) Citations (1)
References:
Abstract: The paper studies the Euler product of the form
$$ P_\pi(M,a(p)|\alpha)=\prod_{p\in P(M)}\left(1-\frac{a(p)}{p^{\alpha+\pi(p)}}\right)^{-1}, $$
where $M$ is an arbitrary monoid of natural numbers formed by the set of primes $P(M)$.
Another object of study is the Dirichlet series of the form
$$ f_\pi(M|\alpha)=\sum_{n\in M}\frac{1}{n^{\alpha +\pi(n)}}. $$

It turns out that they have completely different properties. The Dirichlet series $f_\pi (M| \alpha)$ defines a holomorphic function on the entire complex plane.
And the Euler product $P_\pi(M| \alpha)$ for a monoid $M$ whose set of primes $P(M)$ is infinite, sets on the entire complex plane a meromorphic function that has a countable set of special vertical lines, each of which has a countable set of poles.
In conclusion, the relevant problem of the zeros of the function $f_\pi(M|\alpha)$ is considered.
Keywords: Riemann zeta function, Dirichlet series, zeta function of the monoid of natural numbers, Euler product.
Funding agency Grant number
Russian Foundation for Basic Research 19-41-710004_р_а
This work was prepared under a grant from the RFBR № 19-41-710004 _r_а.
Received: 18.05.2019
Accepted: 12.07.2019
Document Type: Article
UDC: 511.3
Language: Russian
Citation: N. N. Dobrovol'skii, M. N. Dobrovol'skii, N. M. Dobrovol'skii, “On a generalized Eulerian product defining a meromorphic function on the whole complex plane”, Chebyshevskii Sb., 20:2 (2019), 156–168
Citation in format AMSBIB
\Bibitem{DobDobDob19}
\by N.~N.~Dobrovol'skii, M.~N.~Dobrovol'skii, N.~M.~Dobrovol'skii
\paper On a generalized Eulerian product defining a meromorphic function on the whole complex plane
\jour Chebyshevskii Sb.
\yr 2019
\vol 20
\issue 2
\pages 156--168
\mathnet{http://mi.mathnet.ru/cheb759}
\crossref{https://doi.org/10.22405/2226-8383-2018-20-2-156-168}
Linking options:
  • https://www.mathnet.ru/eng/cheb759
  • https://www.mathnet.ru/eng/cheb/v20/i2/p156
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:231
    Full-text PDF :36
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024