Abstract:
Investigation of
Dirichlet series
$$f(s)=\sum_{n=1}^{\infty} a_nn^{-s}$$
and the
adding functions $$\Phi(x)=\sum_{n\leq x} a_n$$
of their coefficients forms one of central domains of classical Number Theory.
Under some special conditions for
$$f(s)=\sum_{n=1}^{+\infty} a_nn^{-s},$$
the function
$\Phi(x)$ can be represented using
$f(s)$. This connection is given by the famous
Perron
formula $$\sum_{n\leq x} a_n = \frac{1}{2\pi i }\int_{c_0-i\infty}^{c_0+i\infty} f(s)\frac{x^s}{s}ds, \quad c_0>\sigma_0, $$
where
$$\sum_{n=1}^{\infty} a_nn^{-s}$$
for
$f(s)$ is absolutely convergenting for
$\sigma>\sigma_0$.
More precisely, classical scheme of a research of the adding function
$$\Phi(x)=\sum_{n\leq x}a_n$$
of coefficients of
$$f(s)=\sum_{n=1}^{\infty}a_nn^{-s}$$
leans on a formula, which (under
certain conditions) is expressing the function
$\Phi(x)$ through the integral
$$\frac{1}{2\pi i}\int_{b-iT}^{b+iT} \frac{f(s)x^s}{s}ds.$$
In 1972, A. A. Karatsuba received an "integrated" formula of
such kind, which connects
$$\int_{1}^x\Phi(y)dy$$
with the integral
$$\frac{1}{2\pi
i}\int_{b-iT}^{b+iT} \frac{f(s)x^{s+1}}{s(s+1)}ds.$$
This formula allows
to receive new results in the research of corresponding
number-theoretical questions.
In this paper we presernt a new formula, expressing the adding function
$$\Phi(x)=\sum_{n\leq x}a_n$$
of
$$f(s)=\sum_{n=1}^{+\infty}a_nn^{-s}$$
through
$f(s),$
related to the Perron formula and to the integrated formula of A. A.
Karatsuba. In fact, the following statement is proved.
- Let the row
$$f(s)=\sum_{n=1}^{+\infty}a_nn^{-s}$$
is absolutely convergenting for $\mathrm{Re}\, s
>1$, $a_n=O(n^{\varepsilon})$, where $\varepsilon>0$ is any small real number, and for $\sigma\rightarrow 1+$ there is an estimation
$$\sum_{n=1}^{\infty}|a_n|n^{-\sigma}=O((\sigma-1)^{-\alpha}),
\,\, \alpha>0.$$
Then for any $b \geq b_0>1$, $T\geq 1$,
$x=N+0,5$, $H>b$ we have the formula
$$\Phi(x)=\sum_{n\leq x}a_n
= \frac{1}{2\pi i}\int_{b-iT}^{b+iT} f(s)\frac{x^sH}{s(H-s)}ds
+$$
$$ +O\left(\frac{x^bH}{T^2(b-1)^{\alpha}}\right)
+O\left(\frac{x^{1+\varepsilon}H\log
x}{T^2}\right)+O\left(x^{\varepsilon}e^{H\log\frac{x}{x+0,5}}\left(1+\frac{x}{H}\right)\right).$$
The most famous Dirichlet series is the
Riemann zeta function $\zeta(s)$, defined for any
$s=\sigma+it$ with
$\mathrm{Re}\, s=\sigma> 1$ as
$$\zeta(s)=\sum_{n=1}^{\infty}\frac{1}{n^s}.$$
The square of zeta function
is connected with the
divisor function
$$\tau (n)=\sum_ { d | n } 1,$$
giving the number of positive integer divisors of positive integer number
$n$.
Generally,
$$
\zeta^{k}(s)=\sum_{n=1}^{\infty}\frac{\tau_k(n)}{n^s}, \quad
\mathrm{Re}\, s > 1,
$$
where function
$$\tau_k (n)=\sum_{n=n_1\cdot \ldots\cdot n_k} 1$$
gives the number of representations
of a positive integer number
$n$ as a product of
$k$
positive integer factors. The adding function of the Dirichlet series
$
\zeta^k (s)$ is the function
$$D_k (x)=\sum_ { n\leq x}\tau_k(n);$$
its research is known as the
Dirichlet divisor problem.
In this article we prove
two new asymptotic formulas for the functions
$$\sum_{n \leq x} \tau_{k_{1}}(n) \cdot \ldots
\cdot \tau_{k_{l}}(n)$$
и
$$
\sum_{n\leq x}\tau_{k}(n^{2}),$$
connected with
$D_k(x)$.
$$\sum_{n \leq x} \tau_{k_{1}}(n) \cdot\ldots
\cdot \tau_{k_{l}}(n)=x P_{m}(\log x) + \theta x^{1 -
\frac{1}{13}m^{-2/3}}(C\log x)^{m},$$
where $l \geq 1$, $k_{1},
\dots, k_{l} \geq 2$, $m=k_{1}\cdot \ldots \cdot k_{l}$, $P_{m}$ is a polinomial of degree $m-1$, $\theta$ is a complex number,
$|\theta|\leq 1$, $m\ll \log^{\frac{5}{6}}x$, $C>0$ is an absolute constant.
$$\sum_{n\leq x}\tau_{k}(n^{2})=xP_{m}(\log x) + \theta x^{1 -
\frac{1}{13}m^{-2/3}}(C\log x)^{m},$$
where $k \geq 2$, $m=\frac{k(k+1)}{2}$, $P_{m}$ is a polinomial of degree $m-1$, $\theta$ is a complex number, $|\theta|\leq 1$,
$m\ll \log^{\frac{5}{6}}x$, $C>0$ is an absolute constant.
Other well-known example of Dirichlet series is given by
Dirichlet
$L$-function
$$L(s,
\chi)=\sum_{n=1}^{\infty} \chi(n)n^{-s}, \mathrm{Re}\, s>1,$$
where
$\chi$ is a Dirichlet character modulo
$D$. A product of several
$L$-functions gives for
$\mathrm{Re}\, s>1$ a row
$$L_1(s,\chi_1)\cdot
\ldots\cdot L_k(s,\chi_k)=\sum_{n=1}^{\infty}c_nn^{-s},$$
with adding function
$$C_k(x)=\sum_{n\leq x}c_n=\sum_{n_1\cdot \ldots\cdot n_k\leq
x}\chi_1(n_1)\cdot \ldots\cdot \chi_k(n_k).$$
The problem of asymptotic behavior of
$C_k(x)$ is a generalisation of the Dirichlet divisor problem. It is connected with the divisor problem in number fields, in particular, in quadratic fields and in сyclotomic fields.
In this article we give
new asymptotic formulas for the mean values of the two functions $\tau^{K}_{k_{1}}(n) \cdot \ldots \cdot
\tau^{K}_{k_{l}}(n)$ and
$\tau^K_k(n^2)$, connected with the function
$\tau_k(n)$, in the quadratic field
$K=Q(\sqrt{D})$,
$D$
is squarefree integer number, and in cyclotomic field
$K=Q(\varsigma)$,
$\varsigma^{t}=1$, with the constant
$c=\frac{1}{13}$ in the exponent of the error term.