Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2018, Volume 19, Issue 4, Pages 118–176
DOI: https://doi.org/10.22405/2226-8383-2018-19-4-118-176
(Mi cheb708)
 

This article is cited in 11 scientific papers (total in 11 papers)

On classical number-theoretic nets

I. Yu. Rebrovaa, V. N. Chubarikovb, N. N. Dobrovolskyc, M. N. Dobrovolskyd, N. M. Dobrovolskya

a Tula State L. N. Tolstoy Pedagogical University
b Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
c Tula State University
d Geophysical centre of RAS
References:
Abstract: The paper considers the hyperbolic Zeta function of nets with weights and the distribution of error values of approximate integration with modifications of nets.
Considered: parallelepipedal nets $M(\vec a, p)$, consisting of points
$$ M_k=\left(\left\{\dfrac{a_1k}{p}\right\}, \ldots, \left\{\dfrac{a_sk}{p}\right\}\right)\qquad(k=1,2, \ldots, p); $$
non-uniform nets $M (P)$, the coordinates of which are expressed via power functions modulo $P$:
$$ M_k=\left(\left\{\dfrac{k}{P}\right\},\left\{\dfrac{k^2}{P}\right\} \ldots, \left\{\dfrac{k^s}{P}\right\}\right)\qquad(k=1,2, \ldots, P), $$
where $P=p$ or $P=p^2$ and $p$ — odd prime number;
generalized uniform nets $M (\vec n)$ of $N=n_1\cdot\ldots\cdot n_s$ points of the form
$$ M_{\vec k}=\left(\left\{\dfrac{k_1}{n_1}\right\},\left\{\dfrac{k_2}{n_2}\right\} \ldots, \left\{\dfrac{k_s}{n_s}\right\}\right)\quad(k_j=1,2, \ldots, n_j\, (j=1,\ldots,s)); $$

algebraic nets introduced by K. K. Frolov in 1976 and generalized parallelepipedal nets, the study of which began in 1984.
In addition, the review of $p$-nets is considered: Hammersley, Halton, Faure, Sobol, and Smolyak nets.
In conclusion, the current problems of applying the number-theoretic method in geophysics are considered, which require further study.
Keywords: hyperbolic Zeta function of nets with weights, classical number-theoretic nets.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00071_а
16-41-710194_р_центр_а
Received: 23.07.2018
Accepted: 22.10.2018
Bibliographic databases:
Document Type: Article
UDC: 511.3
Language: Russian
Citation: I. Yu. Rebrova, V. N. Chubarikov, N. N. Dobrovolsky, M. N. Dobrovolsky, N. M. Dobrovolsky, “On classical number-theoretic nets”, Chebyshevskii Sb., 19:4 (2018), 118–176
Citation in format AMSBIB
\Bibitem{RebChuDob18}
\by I.~Yu.~Rebrova, V.~N.~Chubarikov, N.~N.~Dobrovolsky, M.~N.~Dobrovolsky, N.~M.~Dobrovolsky
\paper On classical number-theoretic nets
\jour Chebyshevskii Sb.
\yr 2018
\vol 19
\issue 4
\pages 118--176
\mathnet{http://mi.mathnet.ru/cheb708}
\crossref{https://doi.org/10.22405/2226-8383-2018-19-4-118-176}
\elib{https://elibrary.ru/item.asp?id=36921199}
Linking options:
  • https://www.mathnet.ru/eng/cheb708
  • https://www.mathnet.ru/eng/cheb/v19/i4/p118
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024