Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2018, Volume 19, Issue 3, Pages 148–163
DOI: https://doi.org/10.22405/2226-8383-2018-19-3-148-163
(Mi cheb685)
 

This article is cited in 1 scientific paper (total in 1 paper)

Another application of Linnik dispersion method

Étienne Fouvryabc, Maksym Radziwiłłd

a Laboratoire de Mathématiques d'Orsay, Univ. Paris–Sud
b Université Paris–Saclay, 91405 Orsay, France
c CNRS
d Department of Mathematics, McGill University, Burnside Hall, Room 1005, 805 Sherbrooke Street West, Montreal, Quebec, Canada, H3A 0B9
Full-text PDF (696 kB) Citations (1)
References:
Abstract: Let $\alpha_m$ and $\beta_n$ be two sequences of real numbers supported on $[M, 2M]$ and $[N, 2N]$ with $M = X^{1/2 - \delta}$ and $N = X^{1/2 + \delta}$. We show that there exists a $\delta_0 > 0$ such that the multiplicative convolution of $\alpha_m$ and $\beta_n$ has exponent of distribution $\frac{1}{2} + \delta-\varepsilon$ (in a weak sense) as long as $0 \leq \delta < \delta_0$, the sequence $\beta_n$ is Siegel-Walfisz and both sequences $\alpha_m$ and $\beta_n$ are bounded above by divisor functions. Our result is thus a general dispersion estimate for “narrow” type-II sums. The proof relies crucially on Linnik's dispersion method and recent bounds for trilinear forms in Kloosterman fractions due to Bettin-Chandee. We highlight an application related to the Titchmarsh divisor problem.
Keywords: equidistribution in arithmetic progressions, dispersion method.
Received: 22.06.2018
Accepted: 10.10.2018
Bibliographic databases:
Document Type: Article
UDC: 512.54
Language: English
Citation: Étienne Fouvry, Maksym Radziwiłł, “Another application of Linnik dispersion method”, Chebyshevskii Sb., 19:3 (2018), 148–163
Citation in format AMSBIB
\Bibitem{FouRad18}
\by \'Etienne~Fouvry, Maksym~Radziwi\l \l
\paper Another application of Linnik dispersion method
\jour Chebyshevskii Sb.
\yr 2018
\vol 19
\issue 3
\pages 148--163
\mathnet{http://mi.mathnet.ru/cheb685}
\crossref{https://doi.org/10.22405/2226-8383-2018-19-3-148-163}
\elib{https://elibrary.ru/item.asp?id=39454394}
Linking options:
  • https://www.mathnet.ru/eng/cheb685
  • https://www.mathnet.ru/eng/cheb/v19/i3/p148
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:160
    Full-text PDF :46
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024