Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2018, Volume 19, Issue 3, Pages 74–79
DOI: https://doi.org/10.22405/2226-8383-2018-19-3-74-79
(Mi cheb680)
 

On non-complete rational trigonometric sums

H. M. Saliba

Notre Dame University Louaize, Lebanon
References:
Abstract: We give the version of Hua's method for the estimation of non-complete rational trigonometric sums. These estimates are non-trivial one for sums with lengths exceeding a square root of length the complete sum.
Keywords: the Hua's method of complete rational trigonometric sums estimate, non-complete rational trigonometric sums, polynomial congruencies, the chain of exponents and roots of congruencies.
Received: 16.09.2018
Accepted: 10.10.2018
Bibliographic databases:
Document Type: Article
UDC: 511.3
Language: English
Citation: H. M. Saliba, “On non-complete rational trigonometric sums”, Chebyshevskii Sb., 19:3 (2018), 74–79
Citation in format AMSBIB
\Bibitem{Sal18}
\by H.~M.~Saliba
\paper On non-complete rational trigonometric sums
\jour Chebyshevskii Sb.
\yr 2018
\vol 19
\issue 3
\pages 74--79
\mathnet{http://mi.mathnet.ru/cheb680}
\crossref{https://doi.org/10.22405/2226-8383-2018-19-3-74-79}
\elib{https://elibrary.ru/item.asp?id=39454389}
Linking options:
  • https://www.mathnet.ru/eng/cheb680
  • https://www.mathnet.ru/eng/cheb/v19/i3/p74
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:125
    Full-text PDF :38
    References:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024