Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2018, Volume 19, Issue 3, Pages 40–45
DOI: https://doi.org/10.22405/2226-8383-2018-19-3-40-45
(Mi cheb677)
 

On one property of the Maass and Shintani functionals

V. A. Bykovsky

Pacific National University, Khabarovsk
References:
Abstract: Functionals of Maass and Shintani play a fundamental role in the study of classical problems of analytic number theory: the Linnik problem on the distribution of integer points on hyperboloids and the problem of the mean value of the function of the number of divisors of quadratic polynomials.
In the paper it is proved that these functionals on spaces consisting of odd functions (odd with respect to the reflection operator, and for holomorphic forms of weight, which is not divisible by $ 4 $) are zero.
Keywords: automorphic forms, Maass and Shintani functionals, spectral theory of automorphic functions.
Funding agency Grant number
Russian Science Foundation 18-41-05001
The study was performed by a grant of Russian scientific Foundation (project No. 18-41-05001).
Received: 17.09.2018
Accepted: 10.10.2018
Bibliographic databases:
Document Type: Article
UDC: 511.334+511.335
Language: Russian
Citation: V. A. Bykovsky, “On one property of the Maass and Shintani functionals”, Chebyshevskii Sb., 19:3 (2018), 40–45
Citation in format AMSBIB
\Bibitem{Byk18}
\by V.~A.~Bykovsky
\paper On one property of the Maass and Shintani functionals
\jour Chebyshevskii Sb.
\yr 2018
\vol 19
\issue 3
\pages 40--45
\mathnet{http://mi.mathnet.ru/cheb677}
\crossref{https://doi.org/10.22405/2226-8383-2018-19-3-40-45}
\elib{https://elibrary.ru/item.asp?id=39454386}
Linking options:
  • https://www.mathnet.ru/eng/cheb677
  • https://www.mathnet.ru/eng/cheb/v19/i3/p40
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:144
    Full-text PDF :38
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024