Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2018, Volume 19, Issue 3, Pages 20–34
DOI: https://doi.org/10.22405/2226-8383-2018-19-3-20-34
(Mi cheb675)
 

This article is cited in 1 scientific paper (total in 1 paper)

Mertens sums requiring fewer values of the Möbius function

M. Huxleya, N. Wattb

a Cardiff University, Wales, United Kingdom
b Dunfermline, Scotland
Full-text PDF (695 kB) Citations (1)
References:
Abstract: We discuss certain identities involving $\mu(n)$ and $M(x) = \sum _{n \leq x}\mu (n)$, the functions of Möbius and Mertens. These allow calculation of $M(N^d)$, for $d=1,2,3,\ldots\ $, as a sum of $O_d \left( N^d(\log N)^{2d - 2}\right)$ terms, each a product of the form $\mu(n_1) \cdots \mu(n_r)$ with $r\leq d$ and $n_1, \ldots , n_r\leq N$. We prove a more general identity in which $M(N^d)$ is replaced by $M(g,K)=\sum_{n\leq K}\mu(n)g(n)$, where $g(n)$ is an arbitrary totally multiplicative function, while each $n_j$ has its own range of summation, $1,\ldots , N_j$. This is not new, except perhaps in that $N_1,\ldots , N_d$ are arbitrary, but our proof (inspired by an identity of E. Meissel, 1854) is new. We are mainly interested in the case $d=2$, $K=N^2$, $N_1=N_2=N$, where the identity has the form $M(g, N^2) = 2 M(g,N) - \mathbf{m}^{\mathrm{T}} A \mathbf{ m}$, with $A$ being the $N\times N$ matrix of elements $a_{mn}=\sum _{k \leq N^2 /(mn)}\,g(k)$, while $\mathbf{ m}=(\mu (1)g(1),\ldots ,\mu (N)g(N))^{\mathrm{T}}$. Our results in Sections 2 and 3 of the paper assume that $g(n)$ equals $1$ for all $n$. The Perron-Frobenius theorem applies in this case: we find that $A$ has one large positive eigenvalue, approximately $(\pi^2 /6)N^2$, with eigenvector approximately $\mathbf{f} = (1,1/2,1/3,\ldots ,1/N)^{\mathrm{T}}$, and that, for large $N$, the second-largest eigenvalue lies in $(-0.58 N, -0.49 N)$. Section 2 includes estimates for the traces of $A$ and $A^2$ (though, for $\mathrm{Tr}(A^2)$, we omit part of the proof). In Section 3 we discuss ways to approximate $\mathbf{ m}^{\mathrm{T}} A \mathbf{ m}$, using the spectral decomposition of $A$, or (alternatively) Perron's formula: the latter approach leads to a contour integral involving the Riemann zeta-function. We also discuss using the identity $A = N^{2\,} \mathbf{ f}^{\,} \!\mathbf{ f}^T - \frac{1}{2}\mathbf{ u} \mathbf{u}^T + Z$, where $\mathbf{u} = (1,\ldots ,1)^{\mathrm{T}}$ and $Z$ is the $N\times N$ matrix of elements $z_{mn} = - \psi(N^2 / (mn))$, with $\psi(x)=x - \lfloor x\rfloor - \frac{1}{2}$.
Keywords: Möbius function, Mertens function, completely multiplicative function, Meissel, Linnik's identity, Vaughan's identity, symmetric matrix, Perron-Frobenius, eigenvalue, eigenvector, Perron's formula, Riemann zeta-function.
Received: 01.06.2018
Accepted: 10.10.2018
Bibliographic databases:
Document Type: Article
UDC: 511.176
Language: English
Citation: M. Huxley, N. Watt, “Mertens sums requiring fewer values of the Möbius function”, Chebyshevskii Sb., 19:3 (2018), 20–34
Citation in format AMSBIB
\Bibitem{HuxWat18}
\by M.~Huxley, N.~Watt
\paper Mertens sums requiring fewer values of the M\"obius function
\jour Chebyshevskii Sb.
\yr 2018
\vol 19
\issue 3
\pages 20--34
\mathnet{http://mi.mathnet.ru/cheb675}
\crossref{https://doi.org/10.22405/2226-8383-2018-19-3-20-34}
\elib{https://elibrary.ru/item.asp?id=39454384}
Linking options:
  • https://www.mathnet.ru/eng/cheb675
  • https://www.mathnet.ru/eng/cheb/v19/i3/p20
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:188
    Full-text PDF :47
    References:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024