Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2018, Volume 19, Issue 2, Pages 523–528
DOI: https://doi.org/10.22405/2226-8383-2018-19-2-523-528
(Mi cheb670)
 

Estimation of the mean value of the remainder term in the asymptotic formula for the sum of values of an arithmetical function on a Beatty sequence

A. V. Begunts, D. V. Goryashin

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: The paper is concerned with the estimation of average values of $\Delta(\alpha,N)=\Delta(\alpha,0,N)$ and $\Delta(\alpha,\beta,N)$ with respect to $\alpha>1$ and $0<\beta<\alpha$ respectively, where $\Delta(\alpha,\beta,N)$ denotes the remainder term in the formula of the form
$$\sum_{n\leq N}f([\alpha n+\beta])=\frac{1}{\alpha}\sum_{m\leq \alpha N+\beta}f(m)+\Delta(\alpha,\beta,N),$$
for an arbitrary number-theoretical fuction $f(n)$.
Keywords: Beatty sequences, integer sequence, mean value of a number-theoretic function.
Received: 19.06.2018
Accepted: 17.08.2018
Bibliographic databases:
Document Type: Article
UDC: 511.35, 517.15
Language: Russian
Citation: A. V. Begunts, D. V. Goryashin, “Estimation of the mean value of the remainder term in the asymptotic formula for the sum of values of an arithmetical function on a Beatty sequence”, Chebyshevskii Sb., 19:2 (2018), 523–528
Citation in format AMSBIB
\Bibitem{BegGor18}
\by A.~V.~Begunts, D.~V.~Goryashin
\paper Estimation of the mean value of the remainder term in~the~asymptotic~formula for the sum of values of~an~arithmetical~function on a Beatty sequence
\jour Chebyshevskii Sb.
\yr 2018
\vol 19
\issue 2
\pages 523--528
\mathnet{http://mi.mathnet.ru/cheb670}
\crossref{https://doi.org/10.22405/2226-8383-2018-19-2-523-528}
\elib{https://elibrary.ru/item.asp?id=37112170}
Linking options:
  • https://www.mathnet.ru/eng/cheb670
  • https://www.mathnet.ru/eng/cheb/v19/i2/p523
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:138
    Full-text PDF :48
    References:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024