Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2018, Volume 19, Issue 2, Pages 421–431
DOI: https://doi.org/10.22405/2226-8383-2018-19-2-421-431
(Mi cheb664)
 

An extended Jebelean–Weber–Sedjelmaci GCD algorithm

D. A. Dolgov

Kazan Federal University
References:
Abstract: There are large number of different algorithms for gcd computation. First of all, it is the Shonhage type gcd algorithms. They are used for very large numbers and have the best asymptotic complexity in the worst case — $ O (n \log ^ 2 (n) \log (\log (n))) $. For lesser numbers, generalized binary algorithms are used. They are based on the $ k $ -ary reduction: $ \alpha \gcd (u, v) = \gcd (v, \frac{| au \pm bv |} {k}) $, integers $ u> v> 0 $, $ \gcd (u, k) = \gcd (v, k) = 1 $, $ \alpha \geqslant 1 $. We use $+$ or $-$ depending on the type of gcd algorithm. The main task is to select the coefficients $ a, b $ such that $ au + bv = 0 \bmod k $. The number $ k $ is usually chosen as a prime number or a power of a prime number. Unfortunately, spirious factors can accumulate during the computation, so $ \alpha \geqslant 1 $. If $ k = 2 ^ s $, then we obtain generalized binary algorithms. It's five times faster than the binary gcd algorithm. Sedjelmaci modified the Jebelean-Weber's algorithm, he removed spirious factors. Asymptotic complexity of the algorithm in the worst case is $ O (n ^ 2 / \log (n)) $.
Bezout Coefficients is a representation of gcd $ d $ of the numbers $ A, B $ of a linear combination $ Ax + By = d $, where $ x $ and $ y $ are integer numbers, called Bezout coefficients. In this paper we introduce the extended Jebelean–Weber–Sedjelmaci algorithm of two natural numbers, formulas and give examples that showing how to calculate inverse elements.
Keywords: GCD, Euclidean gcd, binary gcd, k-ary gcd, Schönhage gcd, Weber gcd, Lehmer gcd.
Received: 14.06.2018
Accepted: 17.08.2018
Bibliographic databases:
Document Type: Article
UDC: 511.17
Language: Russian
Citation: D. A. Dolgov, “An extended Jebelean–Weber–Sedjelmaci GCD algorithm”, Chebyshevskii Sb., 19:2 (2018), 421–431
Citation in format AMSBIB
\Bibitem{Dol18}
\by D.~A.~Dolgov
\paper An extended Jebelean--Weber--Sedjelmaci GCD algorithm
\jour Chebyshevskii Sb.
\yr 2018
\vol 19
\issue 2
\pages 421--431
\mathnet{http://mi.mathnet.ru/cheb664}
\crossref{https://doi.org/10.22405/2226-8383-2018-19-2-421-431}
\elib{https://elibrary.ru/item.asp?id=37112164}
Linking options:
  • https://www.mathnet.ru/eng/cheb664
  • https://www.mathnet.ru/eng/cheb/v19/i2/p421
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:279
    Full-text PDF :226
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024