Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2018, Volume 19, Issue 2, Pages 80–89
DOI: https://doi.org/10.22405/2226-8383-2018-19-2-80-89
(Mi cheb640)
 

This article is cited in 12 scientific papers (total in 12 papers)

On interrelation of Nikolskii Constants for trigonometric polynomials and entire functions of exponential type

D. V. Gorbachev, I. A. Martyanov

Tula State University
References:
Abstract: For $0<p<\infty$, we investigate the interrelation between the Nikolskii constant for trigonometric polynomials of order at most $n$
$$ \mathcal{C}(n,p)=\sup_{T_{n}\ne 0}\frac{\|T_{n}\|_{\infty}}{\|T_{n}\|_{p}} $$
and the Nikolskii constant for entire functions of exponential type at most $1$
$$ \mathcal{L}(p)=\sup_{f\ne 0}\frac{\|f\|_{\infty}}{\|f\|_{p}}. $$

Recently E. Levin and D. Lubinsky have proved that
$$ \mathcal{C}(n,p)=\mathcal{L}(p)n^{1/p}(1+o(1)),\quad n\to \infty. $$
M. Ganzburg and S. Tikhonov have extend this result on the case of Nikolskii–Bernstein constants.
We prove inequalities
$$ n^{1/p}\mathcal{L}(p)\le \mathcal{C}(n,p)\le (n+\lceil p^{-1}\rceil)^{1/p}\mathcal{L}(p),\quad n\in \mathbb{Z}_{+},\quad 0<p<\infty, $$
which improve the result of Levin and Lubinsky. The proof follows our old approach based on properties of the integral Fejer kernel. Using this approach we proved earlier estimates for $p=1$
$$ n\mathcal{L}(1)\le \mathcal{C}(n,1)\le (n+1)\mathcal{L}(1). $$

Using such inequalities, we can estimate the constant $\mathcal{L}(p)$ solving approximately $\mathcal{C}(n,p)$ for large $n$. To do this we use recent results of V. Arestov and M. Deikalova, who expressed the Nikolskii constant $\mathcal{C}(n,p)$ using the algebraic polynomial $\rho_{n}$ that deviates least from zero in the space $L^{p}$ on the segment $[-1,1]$ with the weight $(1-t)v(t)$, where $v(t)=(1-t^{2})^{-1/2}$ is the Chebyshev weight. As consequence, we refine estimates of the Nikolskii constant $\mathcal{L}(1)$ and find that
$$ 1.081<2\pi \mathcal{L}(1)<1.082. $$
To compare previous estimates were $1.081<2\pi \mathcal{L}(1)<1.098$.
Keywords: trigonometric polynomial, entire function of exponential type, Nikolskii constant, Chebyshev weight.
Funding agency Grant number
Russian Science Foundation 18-11-00199
Received: 05.06.2018
Accepted: 17.08.2018
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: D. V. Gorbachev, I. A. Martyanov, “On interrelation of Nikolskii Constants for trigonometric polynomials and entire functions of exponential type”, Chebyshevskii Sb., 19:2 (2018), 80–89
Citation in format AMSBIB
\Bibitem{GorMar18}
\by D.~V.~Gorbachev, I.~A.~Martyanov
\paper On interrelation of Nikolskii Constants for trigonometric polynomials and entire functions of exponential type
\jour Chebyshevskii Sb.
\yr 2018
\vol 19
\issue 2
\pages 80--89
\mathnet{http://mi.mathnet.ru/cheb640}
\crossref{https://doi.org/10.22405/2226-8383-2018-19-2-80-89}
\elib{https://elibrary.ru/item.asp?id=37112140}
Linking options:
  • https://www.mathnet.ru/eng/cheb640
  • https://www.mathnet.ru/eng/cheb/v19/i2/p80
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:172
    Full-text PDF :46
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024