Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2018, Volume 19, Issue 2, Pages 67–79
DOI: https://doi.org/10.22405/2226-8383-2018-19-2-67-79
(Mi cheb639)
 

This article is cited in 9 scientific papers (total in 9 papers)

Nikolskii constants in $L^{p}(\mathbb{R},|x|^{2\alpha+1}\,dx)$ spaces

D. V. Gorbachev, N. N. Dobrovolsky

Tula State University
Full-text PDF (449 kB) Citations (9)
References:
Abstract: Recently Arestov, Babenko, Deikalova, and Horváth have established a series of interesting results correspondent to the sharp Nikolskii constant $\mathcal{L}_{\mathrm{even}}(\alpha,p)$ in the weighted inequality
$$ \sup_{x\in [0,\infty)}|f(x)|\le \mathcal{L}_{\mathrm{even}}(\alpha,p)\sigma^{(2\alpha+2)/p} \biggl(2\int_{0}^{\infty}|f(x)|^{p}x^{2\alpha+1}\,dx\biggr)^{1/p} $$
for the subspace $\mathcal{E}^{\sigma}\cap L^{p}(\mathbb{R}_{+},x^{2\alpha+1}\,dx)$ of even entire functions $f$ of exponential type at most $\sigma>0$, where $1\le p<\infty$ and $\alpha\ge -1/2$.
We prove that, for the same $\alpha$ and $p$
$$ \mathcal{L}_{\mathrm{even}}(\alpha,p)=\mathcal{L}(\alpha,p), $$
where $\mathcal{L}(\alpha,p)$ is the sharp constant in the Nikolskii inequality
$$ \sup_{x\in \mathbb{R}}|f(x)|\le \mathcal{L}(\alpha,p)\sigma^{(2\alpha+2)/p} \biggl(\int_{\mathbb{R}}|f(x)|^{p}|x|^{2\alpha+1}\,dx\biggr)^{1/p} $$
for any (not necessary even) functions $f\in \mathcal{E}_{p,\alpha}^{\sigma}:=\mathcal{E}^{\sigma}\cap L^{p}(\mathbb{R},|x|^{2\alpha+1}\,dx)$.
Also we give bounds of the normalized Nikolskii constant
$$ \mathcal{L}^{*}(\alpha,p):= (2^{2\alpha+2}\Gamma(\alpha+1)\Gamma(\alpha+2))^{1/p}\mathcal{L}(\alpha,p), $$
which are as follows:
$$ \mathcal{L}^{*}(\alpha,p)\le \lceil p/2\rceil^{\frac{2\alpha+2}{p}},\quad p\in (0,\infty), $$
and for fixed $p\in [1,\infty)$
$$ \mathcal{L}^{*}(\alpha,p)\ge (p/2)^{\frac{2\alpha+2}{p}\,(1+o(1))},\quad \alpha\to \infty. $$
The upper estimate is sharp if and only if $p=2$. In this case, $\mathcal{L}^{*}(\alpha,2)=1$ for each $\alpha\ge -1/2$.
Our approach relies on the one-dimensional Dunkl harmonic analysis. To prove the identity $\mathcal{L}_{\mathrm{even}}(\alpha,p)=\mathcal{L}(\alpha,p)$ we use the even positive Dunkl-type generalized translation operator $T^{t}$ such that is bounded on $L^{p}(\mathbb{R},|t|^{2\alpha+1}\,dt)$ with constant one and invariant on the subspace $\mathcal{E}_{p,\alpha}^{\sigma}$.
The proof of the upper estimate of the constant $\mathcal{L}^{*}(\alpha,p)$ is based on estimation of norms of the reproducing kernel for the subspace $\mathcal{E}_{p,\alpha}^{1}$ and the multiplicative inequality for the Nikolskii constant. To obtain the lower estimate we consider the normalized Bessel function $j_{\nu}\in \mathcal{E}_{p,\alpha}^{1}$ of order $\nu\sim (2\alpha+2)/p$.
Keywords: weighted Nikolskii inequality, sharp constant, entire function of exponential type, Dunkl transform, generalized translation operator, reproducing kernel, Bessel function.
Funding agency Grant number
Russian Science Foundation 18-11-00199
Received: 03.06.2018
Accepted: 17.08.2018
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: D. V. Gorbachev, N. N. Dobrovolsky, “Nikolskii constants in $L^{p}(\mathbb{R},|x|^{2\alpha+1}\,dx)$ spaces”, Chebyshevskii Sb., 19:2 (2018), 67–79
Citation in format AMSBIB
\Bibitem{GorDob18}
\by D.~V.~Gorbachev, N.~N.~Dobrovolsky
\paper Nikolskii constants in $L^{p}(\mathbb{R},|x|^{2\alpha+1}\,dx)$ spaces
\jour Chebyshevskii Sb.
\yr 2018
\vol 19
\issue 2
\pages 67--79
\mathnet{http://mi.mathnet.ru/cheb639}
\crossref{https://doi.org/10.22405/2226-8383-2018-19-2-67-79}
\elib{https://elibrary.ru/item.asp?id=37112139}
Linking options:
  • https://www.mathnet.ru/eng/cheb639
  • https://www.mathnet.ru/eng/cheb/v19/i2/p67
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:201
    Full-text PDF :56
    References:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024