Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2018, Volume 19, Issue 2, Pages 56–66
DOI: https://doi.org/10.22405/2226-8383-2018-19-2-56-66
(Mi cheb638)
 

On some fibinomial identities

T. P. Goy

Vasyl Stefanyk Precarpathian National University (Ukraine)
References:
Abstract: Fibinomial identity is identity that combine Fibonacci numbers and binomial or multinomial coefficients. In this paper, for obtaining new fibinomial identities we consider determinants and permanents for some families of lower Toeplitz–Hessenberg matrices $H_n=(h_{ij})$, where $h_{ij}=0$ for all $j>i+1$, $h_{ij}=a_{i-j+1}$, and $a_{i,i+1}=2$, having various translates of the Fibonacci numbers $F_n$ for the nonzero entries.
These determinant and permanent formulas may also be rewritten as identities involving sums of products of Fibonacci numbers and multinomial coefficients. For example, for $n\geq1$, the following formula holds
$$ \sum_{s_1+2s_2+\cdots+ns_n=n}(-1)^{s_1+\cdots+s_n}{s_1+\cdots+s_n\choose s_1,\ldots, s_n}\left(\frac{F_2}{2}\right)^{s_1}\left(\frac{F_4}{2}\right)^{s_2}\cdots\left(\frac{F_{2n}}{2}\right)^{s_n}= \frac{1-4^n}{3\cdot 2^n}, $$
where ${s_1+\cdots+s_n\choose s_1,\ldots, s_n}=\frac{(s_1+\cdots+s_n)!}{s_1!\cdots s_n!}$ is multinomial coefficient, and the summation is over nonnegative integers $s_j$ satisfying Diophantine equation $s_1 +2s_2 +\cdots +ns_n=n$.
Also, we establish connection formulas between Jacobsthal, Pell, Pell-Lucas numbers and Fibonacci numbers using Toeplitz-Hessenberg determinants.
Keywords: Fibonacci sequence, Fibonacci numbers, fibinomial identity, Jacobsthal sequence, Pell sequence, Pell-Lucas sequence, Hessenberg matrix, Toeplitz-Hessenberg matrix, multinomial coefficient.
Received: 03.05.2018
Accepted: 17.08.2018
Bibliographic databases:
Document Type: Article
UDC: 511.176
Language: Russian
Citation: T. P. Goy, “On some fibinomial identities”, Chebyshevskii Sb., 19:2 (2018), 56–66
Citation in format AMSBIB
\Bibitem{Lee18}
\by T.~P.~Goy
\paper On some fibinomial identities
\jour Chebyshevskii Sb.
\yr 2018
\vol 19
\issue 2
\pages 56--66
\mathnet{http://mi.mathnet.ru/cheb638}
\crossref{https://doi.org/10.22405/2226-8383-2018-19-2-56-66}
\elib{https://elibrary.ru/item.asp?id=37112138}
Linking options:
  • https://www.mathnet.ru/eng/cheb638
  • https://www.mathnet.ru/eng/cheb/v19/i2/p56
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:158
    Full-text PDF :50
    References:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024