Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2018, Volume 19, Issue 1, Pages 152–166
DOI: https://doi.org/10.22405/2226-8383-2018-19-1-152-166
(Mi cheb628)
 

This article is cited in 4 scientific papers (total in 4 papers)

Analysis of plasticity theory equations of powder metal systems

E. S. Makarova, A. E. Gvozdevb, G. M. Zhuravleva, A. G. Kolmakovc, A. N. Sergeevb, S. V. Sapozhnikovd, A. D. Brekie, D. V. Maliyb, N. N. Dobrovolskya

a Tula State University
b Tula State Pedagogical University
c A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
d LLC «Tulachermet-Steel»
e Peter the Great St. Petersburg Polytechnic University
Full-text PDF (640 kB) Citations (4)
References:
Abstract: The paper provides the review of calculation method and basic parameters of moulding processes in dilatant materials which are typical representatives of powder metal systems of different chemical compositions. They are based on mathematical models that use not only qualitative explanation, but also quantitative description of the dilatancy effect. The work shows the complete system of basic plasticity theory equations of the rigid-plastic isotropic dilatant media. It considers an example of the steady-state plastic flow calculation under conditions of axisymmetric deformation. It is shown that for axisymmetric deformation the equations relative to velocity vector projection on the characteristic directions are similar to the equations for planar deformation. It is established that the current yield conditions with varying degrees of accuracy describe the types of dilatancy (loosening and compaction). Therefore, for a more precise solution of some problems, it is necessary to refine the mathematical models of the yield condition. For some processes of plastic shaping when solving the system of equations of dilatant media, it is expedient to represent the flow conditions in the form of separate regions: hyperbolic, parabolic and elliptic.
Keywords: dilatant medium, axisymmetric deformation, complete system of equations, condition of fluidity, characteristics of the yield curve, powder metal system.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation RFMEF157717X0271
Bibliographic databases:
Document Type: Article
UDC: 539.52:669.11.018
Language: Russian
Citation: E. S. Makarov, A. E. Gvozdev, G. M. Zhuravlev, A. G. Kolmakov, A. N. Sergeev, S. V. Sapozhnikov, A. D. Breki, D. V. Maliy, N. N. Dobrovolsky, “Analysis of plasticity theory equations of powder metal systems”, Chebyshevskii Sb., 19:1 (2018), 152–166
Citation in format AMSBIB
\Bibitem{MakGvoZhu18}
\by E.~S.~Makarov, A.~E.~Gvozdev, G.~M.~Zhuravlev, A.~G.~Kolmakov, A.~N.~Sergeev, S.~V.~Sapozhnikov, A.~D.~Breki, D.~V.~Maliy, N.~N.~Dobrovolsky
\paper Analysis of plasticity theory equations of powder metal systems
\jour Chebyshevskii Sb.
\yr 2018
\vol 19
\issue 1
\pages 152--166
\mathnet{http://mi.mathnet.ru/cheb628}
\crossref{https://doi.org/10.22405/2226-8383-2018-19-1-152-166}
\elib{https://elibrary.ru/item.asp?id=36312683}
Linking options:
  • https://www.mathnet.ru/eng/cheb628
  • https://www.mathnet.ru/eng/cheb/v19/i1/p152
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:215
    Full-text PDF :81
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024